Thermal decomposition process in algaenan of Botryococcus braunii race L. Part 2: Molecular dynamics simulations using the ReaxFF reactive force field

This paper reports ReaxFF MD simulation results on pyrolysis of a molecular model of the algaenan Botryococcus braunii race L biopolymer, specifically, ReaxFF predictions on the pyrolysis of prototypical chemical structures involving aliphatic chain esters and aldehydes. These preliminary computational experiments are then used to analyze the thermal cracking process within algaenan race L biopolymers. The simulations indicate that the thermal decomposition of the algaenan biopolymer is initiated by the cleavage of a C–O bond in the ester group, followed by the release of carbon dioxide. We also observe a significant, strongly temperature dependent, release of ethylene. This degradation mechanism leads to products similar to those observed in pyrolysis experiments, validating this computational approach.

[1]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .

[2]  R. Kosloff,et al.  Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide. , 2005, Journal of the American Chemical Society.

[3]  S. Derenne,et al.  Closed pyrolyses of the isoprenoid algaenan of Botryococcus braunii, L race: Geochemical implications for derived kerogens , 1995 .

[4]  A. V. van Duin,et al.  Shock waves in high-energy materials: the initial chemical events in nitramine RDX. , 2003, Physical review letters.

[5]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[6]  A. V. van Duin,et al.  Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. , 2005, Journal of the American Chemical Society.

[7]  A. V. van Duin,et al.  ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. , 2008, The journal of physical chemistry. A.

[8]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[9]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[10]  Peter R. Solomon,et al.  General model of coal devolatilization , 1987 .

[11]  Phillip E. Savage,et al.  Asphaltene reaction pathways. V: Chemical and mathematical modeling , 1989 .

[12]  V. Chernyshev,et al.  Principal phase of oil formation , 1970 .

[13]  J. D. de Pablo,et al.  Improved transition path sampling methods for simulation of rare events. , 2008, The Journal of chemical physics.

[14]  E. Salmon,et al.  Thermal decomposition processes in algaenan of Botryococcus braunii race L. Part 1: Experimental data and structural evolution , 2009 .

[15]  Clark R. Landis,et al.  Valence Bond Concepts Applied to the Molecular Mechanics Description of Molecular Shapes. 2. Applications to Hypervalent Molecules of the P-Block , 1993 .

[16]  A. V. Duin,et al.  Computational chemical investigation into isorenieratene cyclisation , 2003 .

[17]  W. Goddard,et al.  Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoOx , 2006 .

[18]  A. V. van Duin,et al.  Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes , 2006 .

[19]  P. Ortoleva,et al.  A model for lignin alteration - part I: a kinetic reaction-network model , 2001 .

[20]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[21]  D. Waples Time and Temperature in Petroleum Formation: Application of Lopatin's Method to Petroleum Exploration , 1981 .

[22]  A. V. van Duin,et al.  Optimization and application of lithium parameters for the reactive force field, ReaxFF. , 2005, The journal of physical chemistry. A.

[23]  M. L. Gorbaty,et al.  Predicting oil and gas compositional yields via chemical structure–chemical yield modeling (CS-CYM): Part 1 – Concepts and implementation , 2007 .

[24]  A. V. Duin,et al.  Mechanical properties of connected carbon nanorings via molecular dynamics simulation , 2005 .

[25]  A. V. van Duin,et al.  Dynamics of the dissociation of hydrogen on stepped platinum surfaces using the ReaxFF reactive force field. , 2006, Journal of Physical Chemistry B.

[26]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[27]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[28]  Markus J Buehler,et al.  Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. , 2006, Physical review letters.

[29]  Christian Minot,et al.  Two theoretical simulations of hydrocarbons thermal cracking: Reactive force field and density functional calculations , 2008 .