Compact Thermal Model for Vertical Nanowire Phase-Change Memory Cells

We introduce a compact model for the temperature distribution in cylindrical nanowire (NW) phase-change memory (PCM) cells for both transient (nanoseconds) and steady-state time scales. The model takes advantage of the symmetry of the cell to efficiently calculate temperature distribution dependence on geometry and material/interface properties. The results are compared with data from the literature and with finite-element simulations, showing improved computation speed by two orders of magnitude. Programming current sensitivity to cell dimensions and material properties is investigated, indicating that NW diameter (D) and thermal boundary resistance (TBR) play the strongest role in enhancing PCM energy efficiency.

[1]  D. Ielmini,et al.  Modeling of Programming and Read Performance in Phase-Change Memories—Part I: Cell Optimization and Scaling , 2008, IEEE Transactions on Electron Devices.

[2]  Simone Raoux,et al.  Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3ω method , 2009 .

[3]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[4]  Yi Cui,et al.  Synthesis and characterization of phase-change nanowires. , 2006, Nano letters.

[5]  Andrea L. Lacaita,et al.  Phase change memories: State-of-the-art, challenges and perspectives , 2005 .

[6]  A. Pirovano,et al.  Scaling analysis of phase-change memory technology , 2003, IEEE International Electron Devices Meeting 2003.

[7]  Shih-Hung Chen,et al.  Phase-change random access memory: A scalable technology , 2008, IBM J. Res. Dev..

[8]  K. Goodson,et al.  The Impact of Thermal Boundary Resistance in Phase-Change Memory Devices , 2008, IEEE Electron Device Letters.

[9]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[10]  Eric Pop,et al.  Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films , 2007 .

[11]  G.W. Burr,et al.  Analytical model for RESET operation of Phase Change Memory , 2008, 2008 IEEE International Electron Devices Meeting.

[12]  A. Pirovano,et al.  Electronic switching effect and phase-change transition in chalcogenide materials , 2004, IEEE Electron Device Letters.

[13]  S.O. Park,et al.  Highly scalable on-axis confined cell structure for high density PRAM beyond 256Mb , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[14]  Ming-Jinn Tsai,et al.  Enhanced Thermal Efficiency in Phase-Change Memory Cell by Double GST Thermally Confined Structure , 2007, IEEE Electron Device Letters.

[15]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[16]  C. Kittel Introduction to solid state physics , 1954 .

[17]  A. Pirovano,et al.  Electrothermal and phase-change dynamics in chalcogenide-based memories , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[18]  S.O. Park,et al.  Highly Scalable Phase Change Memory with CVD GeSbTe for Sub 50nm Generation , 2007, 2007 IEEE Symposium on VLSI Technology.