Exploiting Emoticons in Polarity Classification of Text

With people increasingly using emoticons in written text on the Web in order to express, stress, or disambiguate their sentiment, it is crucial for automated sentiment analysis tools to correctly account for such graphical cues for sentiment. We analyze how emoticons typically convey sentiment and we subsequently propose and evaluate a novel method for exploiting this with a manually created emoticon sentiment lexicon in a lexicon-based polarity classification method. We evaluate our approach on 2,080 Dutch tweets and forum messages, which all contain emoticons. We validate our findings on 10,069 English reviews of apps, some of which contain emoticons. We find that accounting for the sentiment conveyed by emoticons on a paragraph level - and, to a lesser extent, on a sentence level - significantly improves polarity classification performance. Whenever emoticons are used, their associated sentiment tends to dominate the sentiment conveyed by textual cues and forms a good proxy for the polarity of text.

[1]  Bolanle Adefowoke Ojokoh,et al.  A Feature-Opinion Extraction Approach to Opinion Mining , 2012, J. Web Eng..

[2]  Bernard J. Jansen,et al.  Twitter power: Tweets as electronic word of mouth , 2009, J. Assoc. Inf. Sci. Technol..

[3]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[4]  Minyi Guo,et al.  Emoticon Smoothed Language Models for Twitter Sentiment Analysis , 2012, AAAI.

[5]  Philip S. Yu,et al.  A holistic lexicon-based approach to opinion mining , 2008, WSDM '08.

[6]  Diego Reforgiato Recupero,et al.  OASYS: An Opinion Analysis System , 2006, AAAI 2006.

[7]  Prem Melville Social Media Analytics: Channeling the Power of the Blogosphere for Marketing Insight , 2009 .

[8]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[9]  Uzay Kaymak,et al.  Mining Economic Sentiment Using Argumentation Structures , 2010, ER Workshops.

[10]  Diane F. Witmer,et al.  On-Line Smiles: Does Gender Make a Difference in the Use of Graphic Accents? , 2006, J. Comput. Mediat. Commun..

[11]  Vaibhavi N Patodkar,et al.  Twitter as a Corpus for Sentiment Analysis and Opinion Mining , 2016 .

[12]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[13]  Carlo Strapparava,et al.  SemEval-2007 Task 14: Affective Text , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[14]  Kimberly D. Voll,et al.  Extracting sentiment as a function of discourse structure and topicality , 2008 .

[15]  Rada Mihalcea,et al.  Learning Multilingual Subjective Language via Cross-Lingual Projections , 2007, ACL.

[16]  Ke Xu,et al.  MoodLens: an emoticon-based sentiment analysis system for chinese tweets , 2012, KDD.

[17]  Roberto Navigli,et al.  Word sense disambiguation: A survey , 2009, CSUR.

[18]  Uzay Kaymak,et al.  Determining negation scope and strength in sentiment analysis , 2011, 2011 IEEE International Conference on Systems, Man, and Cybernetics.

[19]  Fabrício Benevenuto,et al.  Comparing and combining sentiment analysis methods , 2013, COSN '13.

[20]  Terry L. Childers,et al.  Conditions for a Picture-Superiority Effect on Consumer Memory , 1984 .

[21]  Soo-Min Kim,et al.  Automatic Identification of Pro and Con Reasons in Online Reviews , 2006, ACL.

[22]  J. Burgoon,et al.  Nonverbal Communication: The Unspoken Dialogue , 1988 .

[23]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[24]  David E. Losada,et al.  Sentiment-Based Ranking of Blog Posts Using Rhetorical Structure Theory , 2013, NLDB.

[25]  Stanley Feldstein,et al.  On Gesture: Its Complementary Relationship With Speech , 2014 .

[26]  Uzay Kaymak,et al.  Polarity analysis of texts using discourse structure , 2011, CIKM '11.

[27]  R. Shepard Recognition memory for words, sentences, and pictures , 1967 .

[28]  Landra L. Rezabek,et al.  Visual Cues in Computer-Mediated Communication: Supplementing Text with Emoticons , 1998 .

[29]  Uzay Kaymak,et al.  Exploiting emoticons in sentiment analysis , 2013, SAC '13.

[30]  Jonathon Read,et al.  Using Emoticons to Reduce Dependency in Machine Learning Techniques for Sentiment Classification , 2005, ACL.

[31]  Mike Thelwall,et al.  Sentiment in short strength detection informal text , 2010 .

[32]  Khurshid Ahmad,et al.  Sentiment Polarity Identification in Financial News: A Cohesion-based Approach , 2007, ACL.

[33]  Flavius Frasincar,et al.  Sentiment Analysis with a Multilingual Pipeline , 2011, WISE.

[34]  Shlomo Argamon,et al.  Using appraisal groups for sentiment analysis , 2005, CIKM '05.

[35]  Uzay Kaymak,et al.  Multi-lingual support for lexicon-based sentiment analysis guided by semantics , 2014, Decis. Support Syst..

[36]  Uzay Kaymak,et al.  Analyzing Sentiment in a Large Set of Web Data While Accounting for Negation , 2011, AWIC.

[37]  Antonina Dattolo,et al.  Sentiment Classification for the Italian Language: A Case Study on Movie Reviews , 2008 .

[38]  Flavius Frasincar,et al.  Sentiment Lexicon Creation from Lexical Resources , 2011, BIS.

[39]  Uzay Kaymak,et al.  Lexicon-based sentiment analysis by mapping conveyed sentiment to intended sentiment , 2014, Int. J. Web Eng. Technol..

[40]  David E. Losada,et al.  Effective and efficient polarity estimation in blogs based on sentence-level evidence , 2011, CIKM '11.

[41]  Bing Liu,et al.  Sentiment Analysis and Opinion Mining , 2012, Synthesis Lectures on Human Language Technologies.

[42]  Mike Thelwall,et al.  A Study of Information Retrieval Weighting Schemes for Sentiment Analysis , 2010, ACL.

[43]  Ari Rappoport,et al.  Enhanced Sentiment Learning Using Twitter Hashtags and Smileys , 2010, COLING.

[44]  Ronen Feldman,et al.  Techniques and applications for sentiment analysis , 2013, CACM.

[45]  Lee-Ellen Marvin,et al.  Spoof, Spam, Lurk and Lag: the Aesthetics of Text-based Virtual Realities , 2006, J. Comput. Mediat. Commun..