A note on hyper-bent functions via Dillon-like exponents
暂无分享,去创建一个
[1] Sihem Mesnager,et al. Dickson Polynomials, Hyperelliptic Curves and Hyper-bent Functions , 2012, SETA.
[2] F. Vercauteren,et al. Computing Zeta Functions of Curves over Finite Fields , 2008 .
[3] Yixian Yang,et al. A new class of hyper-bent Boolean functions in binomial forms , 2011, ArXiv.
[4] Petr Lisonek. An Efficient Characterization of a Family of Hyperbent Functions , 2011, IEEE Transactions on Information Theory.
[5] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[6] Sihem Mesnager,et al. A new class of bent and hyper-bent Boolean functions in polynomial forms , 2011, Des. Codes Cryptogr..
[7] François G. Dorais,et al. A Wieferich Prime Search up to 6.7 × 10 15 , 2011 .
[8] G. Lachaud,et al. The weights of the orthogonals of the extended quadratic binary Goppa codes , 1990, IEEE Trans. Inf. Theory.
[9] Timo Neumann,et al. BENT FUNCTIONS , 2006 .
[10] Sihem Mesnager,et al. An efficient characterization of a family of hyper-bent functions with multiple trace terms , 2011, J. Math. Cryptol..
[11] Frederik Vercauteren,et al. An Extension of Kedlaya's Algorithm to Artin-Schreier Curves in Characteristic 2 , 2002, ANTS.
[12] Guang Gong,et al. Hyperbent Functions, Kloosterman Sums, and Dickson Polynomials , 2008, IEEE Transactions on Information Theory.
[13] Yixian Yang,et al. A New Class of Hyper-bent Boolean Functions with Multiple Trace Terms , 2011, IACR Cryptol. ePrint Arch..
[14] J. Dillon. Elementary Hadamard Difference Sets , 1974 .
[15] R. Lercier,et al. A quasi quadratic time algorithm for hyperelliptic curve point counting , 2006 .
[16] K. Kedlaya. Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology , 2001, math/0105031.
[17] Yixian Yang,et al. A generalization of the class of hyper-bent Boolean functions in binomial forms , 2011, IACR Cryptol. ePrint Arch..
[18] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[19] Tanja Lange,et al. Handbook of Elliptic and Hyperelliptic Curve Cryptography , 2005 .
[20] Hans Dobbertin,et al. New cyclic difference sets with Singer parameters , 2004, Finite Fields Their Appl..
[21] C. Hooley. On Artin's conjecture. , 1967 .
[22] M. Hellman. The Mathematics of Public-Key Cryptography , 1979 .
[23] Guang Gong,et al. Transform domain analysis of DES , 1999, IEEE Trans. Inf. Theory.
[24] Daeyeoul Kim,et al. A CRITERION ON PRIMITIVE ROOTS MODULO p , 2000 .
[25] Sihem Mesnager. Hyper-bent Boolean Functions with Multiple Trace Terms , 2010, WAIFI.
[26] Hendrik Hubrechts. Point counting in families of hyperelliptic curves in characteristic 2 , 2006, math/0607346.
[27] Amr M. Youssef,et al. Hyper-bent Functions , 2001, EUROCRYPT.
[28] Francesco Pappalardi,et al. On Artin's Conjecture for Primitive Roots , 1993 .
[29] Claude Carlet,et al. Hyper-bent functions and cyclic codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[30] Gary L. Mullen,et al. Value sets of Dickson polynomials over finite fields , 1988 .
[31] Frederik Vercauteren,et al. An Extension of Kedlaya's Algorithm to Hyperelliptic Curves in Characteristic 2 , 2004, Journal of Cryptology.