Tree Constructions of Free Continuous Algebras

Abstract Continuous algebras are algebras endowed with a partial order which is complete with respect to specified joins and such that the operations preserve these specified joins. We prove the existence of free continuous algebras by actually giving a concrete description of them in terms of trees, for any type of algebras and any choice of the “specified” joins.

[1]  George Markowsky,et al.  Categories of Chain-Complete Posets , 1977, Theor. Comput. Sci..

[2]  Joseph A. Goguen,et al.  Some Fundamentals of Order-Algebraic Semantics , 1976, MFCS.

[3]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[4]  G. Markowsky Chain-complete posets and directed sets with applications , 1976 .

[5]  Dana S. Scott,et al.  The lattice of flow diagrams , 1971, Symposium on Semantics of Algorithmic Languages.

[6]  Jerzy Tiuryn,et al.  Fixed-Points and Algebras with Infinitely Long Expressions, I , 1977, MFCS.

[7]  Irène Guessarian On Continuous Completions , 1979, Theoretical Computer Science.

[8]  Mitchell Wand Fixed-Point Constructions in Order-Enriched Categories , 1979, Theor. Comput. Sci..

[9]  Joseph A. Goguen,et al.  Initial Algebra Semantics and Continuous Algebras , 1977, J. ACM.

[10]  STEPHrN L. BLOOM,et al.  Varieties of Ordered Algebras , 1976, J. Comput. Syst. Sci..

[11]  Gordon D. Plotkin,et al.  The Category-Theoretic Solution of Recursive Domain Equations (Extended Abstract) , 1977, FOCS.

[12]  Bernhard Banaschewski,et al.  Completions of Partially Ordered Sets , 1982, SIAM J. Comput..

[13]  Daniel J. Lehmann,et al.  Data types , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[14]  James W. Thatcher,et al.  A Uniform Approach to Inductive Posets and Inductive Closure , 1977, Theor. Comput. Sci..

[15]  José Meseguer,et al.  On Order-Complete Universal Algebra and Enriched Functorial Semantics , 1977, FCT.

[16]  G. Markowsky,et al.  Bases for chain-complete posets , 1976 .

[17]  J. Mycielski,et al.  A compactification of the algebra of terms , 1976 .

[18]  Daniel J. Lehmann,et al.  On the Algebra of Order , 1980, J. Comput. Syst. Sci..

[19]  John C. Reynolds Semantics of the Domain of Flow Diagrams , 1977, JACM.