Split semiorders

A poset P = (X, 4 ) is a split semiorder if there are maps a , f : X --* • with a(x)<~f(x)<~a(x) + 1 for every x E X such that x -< y if and only if f ( x ) < a ( y ) and a(x) + 1 < f ( y ) . A split interval order is defined similarly with a(x)+ 1 replaced by b(x), a(x)<~ f(x)<~ b(x), such that x -< y if and only if f ( x ) < a ( y ) and b(x) < f ( y ) . We investigate these generalizations of semiorders and interval orders through aspects of their numerical representations, three notions of poset dimensionality, minimal forbidden posets, and inclusion relationships to other classes of posets, including several types of tolerance orders. (~) 1999 Elsevier Science B.V. All rights reserved

[1]  William T. Trotter,et al.  Characterization problems for graphs, partially ordered sets, lattices, and families of sets , 1976, Discret. Math..

[2]  William T. Trotter Stacks and splits of partially ordered sets , 1981, Discret. Math..

[3]  William T. Trotter,et al.  On the complexity of posets , 1976, Discret. Math..

[4]  Kenneth P. Bogart,et al.  Bipartite tolerance orders , 1994, Discret. Math..

[5]  Kenneth P. Bogart,et al.  Proper and unit bitolerance orders and graphs , 1998, Discret. Math..

[6]  Robert L. Causey Review: Dana Scott, Patrick Suppes, Foundational aspects of Theories of Measurement , 1968 .

[7]  Larry J. Langley Interval tolerance orders and dimension , 1993 .

[8]  Peter C. Fishburn,et al.  Proper and Unit Tolerance Graphs , 1995, Discret. Appl. Math..

[9]  David Kelly The 3-Irreducible Partially Ordered Sets , 1977, Canadian Journal of Mathematics.

[10]  R. Luce Semiorders and a Theory of Utility Discrimination , 1956 .

[11]  Wojciech A. Trybulec Partially Ordered Sets , 1990 .

[12]  Kenneth P. Bogart,et al.  Intervals and Orders: What Comes After Interval Orders? , 1994, ORDAL.

[13]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[14]  Ann N. Trenk On k-weak orders: Recognition and a tolerance result , 1998, Discret. Math..

[15]  P. Fishburn Intransitive indifference with unequal indifference intervals , 1970 .

[16]  Fishburn,et al.  Generalizations of Semiorders: A Review Note , 1997, Journal of mathematical psychology.

[17]  I. Rabinovitch,et al.  The Dimension of Semiorders , 1978, J. Comb. Theory, Ser. A.

[18]  Patrick Suppes,et al.  Foundational aspects of theories of measurement , 1958, Journal of Symbolic Logic.