Pellet fuelled enhanced confinement ICRH discharges in TFTR
暂无分享,去创建一个
J. Stevens | G. Hammett | E. Synakowski | L. Baylor | R. Nazikian | R. Majeski | E. Fredrickson | S. Sabbagh | M. Bell | F. Levinton | M. Bitter | H. Park | C. Phillips | J. Wilson | J. Rogers | S. Batha | G. Taylor | G. Schmidt | D. Jassby | F. Jobes | D. K. Owens | G. Schilling | A. Ramsey | D. Owens | J. Wilson | H. Park
[1] Lao,et al. Enhanced confinement and stability in DIII-D discharges with reversed magnetic shear. , 1995, Physical review letters.
[2] F. Levinton,et al. Confinement and the safety factor profile , 1995 .
[3] Manickam,et al. Improved confinement with reversed magnetic shear in TFTR. , 1995, Physical review letters.
[4] William Dorland,et al. Quantitative predictions of tokamak energy confinement from first‐principles simulations with kinetic effects , 1995 .
[5] R. König,et al. SPECIAL TOPIC: Survey of pellet enhanced performance in JET discharges , 1995 .
[6] R. Budny,et al. A STANDARD DT SUPERSHOT SIMULATION , 1994 .
[7] Steven H. Batha,et al. EQUILIBRIUM RECONSTRUCTION OF THE SAFETY FACTOR PROFILE IN TOKAMAKS FROM MOTIONAL STARK EFFECT DATA , 1994 .
[8] E. Joffrin,et al. Improved confinement in high li lower hybrid driven steady state plasmas in TORE SUPRA , 1994 .
[9] Evidence for a local diffusive model of transport in a tokamak , 1992 .
[10] W. Houlberg,et al. Pellet fuelling deposition measurements on Jet and TFTR , 1992 .
[11] F. M. Levinton,et al. The multichannel motional Stark effect diagnostic on TFTR , 1992 .
[12] P. W. Fisher,et al. Tritium pellet injector for TFTR , 1992 .
[13] D.F.H. Start,et al. Shear Reversal and Mhd Activity During Pellet Enhanced Performance Pulses in Jet , 1992 .
[14] A. W. Edwards,et al. Theoretical analysis of the role of the infernal mode in the stability of peaked pressure profiles in pellet fuelled JET discharges , 1991 .
[15] A. T. Ramsey,et al. Experiments utilizing ion cyclotron range of frequencies heating on the TFTR tokamak , 1991 .
[16] J. Jacquinot,et al. H-mode confinement in JET with enhanced performance by pellet peaked density profiles , 1991 .
[17] R. Yoshino,et al. EFFECT OF THE q = 1 SURFACE AND SAWTOOTH ACTIVITY ON PRESSURE PROFILES AND ENERGY CONFINEMENT IN PELLET FUELLED JT-60 LIMITER PLASMAS , 1991 .
[18] B. Leblanc,et al. Effect of current profile shape on second region access in high‐beta tokamak plasmas , 1990 .
[19] G. Rewoldt,et al. Toroidal microinstability studies of high‐temperature tokamaks , 1990 .
[20] R. Yoshino. Current profile modification in JT-60 pellet injection experiments , 1989 .
[21] R. D. Burris,et al. Eight‐shot pneumatic pellet injection system for the tokamak fusion test reactor , 1987 .
[22] Tadashi Sekiguchi,et al. Plasma Physics and Controlled Nuclear Fusion Research , 1987 .
[23] Enhancement of confinement in tokamaks , 1986 .
[24] P. Rebut,et al. Magnetic topology, disruptions and electron heat transport , 1986 .
[25] Brian Labombard,et al. Energy confinement of high-density pellet-fueled plasmas in the Alcator C tokamak , 1984 .
[26] R. Goldston. Energy confinement scaling in Tokamaks: some implications of recent experiments with Ohmic and strong auxiliary heating , 1984 .
[27] D. McCune,et al. New techniques for calculating heat and particle source rates due to neutral beam injection in axisymmetric tokamaks , 1981 .