Perspectives for the use of structural information and chemical genetics to develop inhibitors of Janus kinases

•  Introduction ‐  Jaks in disease ‐  Jak2‐V617F signal transduction •  Structure/function: the potential interest of the Jak domains as drug targets ‐  The FERM domain ‐  The FERM domain as drug target ‐  The SH2 domain ‐  The SH2 domain as drug target ‐  The pseudokinase domain ‐  The pseudokinase domain as drug target ‐  The kinase domain ‐  The kinase domain as drug target ‐  Summary •  The growing family of ATP‐competitive nanomolar Jak inhibitors •  Analogue‐sensitive kinases and possible applications to Jaks ‐  Chemical genetics to characterize kinases ‐  Chemical genetics in practice: possible pitfalls and requirements ‐  Advantages and possible applications of the chemical genetics approach ‐  Investigation of specific kinase‐mediated effects ‐  Specific and flexible pharmacologic intervention allows target validation of compounds from drug screens ‐  Identification of direct substrates •  Structure‐based interpretation of the Jak mutations ‐  Mutations within the FERM and SH2 domains ‐  Mutations within the kinase‐like domain ‐  Mutations within the kinase domain •  Perspectives

[1]  Hua Yu,et al.  The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. , 2009, Cancer cell.

[2]  R. Wynn,et al.  Combined Inhibition of Janus Kinase 1/2 for the Treatment of JAK2V617F-Driven Neoplasms: Selective Effects on Mutant Cells and Improvements in Measures of Disease Severity , 2009, Clinical Cancer Research.

[3]  I. Behrmann,et al.  SOCS-mediated downregulation of mutant Jak2 (V617F, T875N and K539L) counteracts cytokine-independent signaling , 2009, Oncogene.

[4]  M. Scott,et al.  An inhibitor of Janus kinase 2 prevents polycythemia in mice. , 2009, Biochemical pharmacology.

[5]  M. Kyba,et al.  A JAK2 Interdomain Linker Relays Epo Receptor Engagement Signals to Kinase Activation* , 2009, The Journal of Biological Chemistry.

[6]  T. Barbui,et al.  Epigenetic therapy in myeloproliferative neoplasms: evidence and perspectives , 2009, Journal of cellular and molecular medicine.

[7]  M. Loh,et al.  JAK mutations in high-risk childhood acute lymphoblastic leukemia , 2009, Proceedings of the National Academy of Sciences.

[8]  A. Jean,et al.  Brain-derived neurotrophic factor/tropomyosin-related kinase receptor type B signaling is a downstream effector of the brainstem melanocortin system in food intake control. , 2009, Endocrinology.

[9]  F. Bessho,et al.  A novel JAK2 splicing mutation in neonatal myeloproliferative disorder accompanying congenital anomalies , 2009, British journal of haematology.

[10]  T. Kasahara,et al.  The Acute Lymphoblastic Leukemia-associated JAK2 L611S Mutant Induces Tumorigenesis in Nude Mice* , 2009, Journal of Biological Chemistry.

[11]  A. Basbaum,et al.  TrkB Signaling Is Required for Both the Induction and Maintenance of Tissue and Nerve Injury-Induced Persistent Pain , 2009, The Journal of Neuroscience.

[12]  Tai-Sung Lee,et al.  Mechanisms of constitutive activation of Janus kinase 2‐V617F revealed at the atomic level through molecular dynamics simulations , 2009, Cancer.

[13]  N. K. Williams,et al.  Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. , 2009, Journal of molecular biology.

[14]  A. Tefferi,et al.  CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients , 2009, Leukemia.

[15]  J. O’Shea,et al.  Selectivity and therapeutic inhibition of kinases: to be or not to be? , 2009, Nature Immunology.

[16]  N. Heerema,et al.  Prevalence and clinical correlates of JAK2 mutations in Down syndrome acute lymphoblastic leukaemia , 2009, British journal of haematology.

[17]  P. Heinrich,et al.  An Unusual Insertion in Jak2 Is Crucial for Kinase Activity and Differentially Affects Cytokine Responses , 2009, The Journal of Immunology.

[18]  T. Haferlach,et al.  Detection of JAK2 exon 12 mutations in 15 patients with JAK2V617F negative polycythemia vera , 2009, Haematologica.

[19]  J. O’Shea,et al.  Janus kinases in immune cell signaling , 2009, Immunological reviews.

[20]  H. Hermanns,et al.  Oncostatin M-induced and constitutive activation of the JAK2/STAT5/CIS pathway suppresses CCL1, but not CCL7 and CCL8 chemokine expression , 2009, Cell Communication and Signaling.

[21]  Chao Zhang,et al.  The unfolded protein response signals through high-order assembly of Ire1 , 2009, Nature.

[22]  J. Choi,et al.  JAK2 V617F/C618R mutation in a patient with polycythemia vera: a case study and review of the literature. , 2009, Cancer genetics and cytogenetics.

[23]  M. Greaves,et al.  Specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukemia. , 2009, Blood.

[24]  Chao Zhang,et al.  Generation of a Novel System for Studying Spleen Tyrosine Kinase Function in Macrophages and B Cells1 , 2009, The Journal of Immunology.

[25]  Stefan Knapp,et al.  Structure of the Pseudokinase VRK3 Reveals a Degraded Catalytic Site, a Highly Conserved Kinase Fold, and a Putative Regulatory Binding Site , 2009, Structure.

[26]  Dac-Trung Nguyen,et al.  Examining the chirality, conformation and selective kinase inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-yl)-3-oxopropanenitrile (CP-690,550). , 2008, Journal of medicinal chemistry.

[27]  Tao Wang,et al.  Effects of the JAK2 Inhibitor, AZ960, on Pim/BAD/BCL-xL Survival Signaling in the Human JAK2 V617F Cell Line SET-2* , 2008, Journal of Biological Chemistry.

[28]  V. Markovtsov,et al.  In Vitro and in Vivo Inhibition of JAK2 Signaling by Potent and Selective JAK2 Inhibitor , 2008 .

[29]  T. Barbui,et al.  A Phase 2A study of the Histone-Deacetylase Inhibitor ITF2357 in Patients with Jak2 V617F Positive Chronic Myeloproliferative Neoplasms , 2008 .

[30]  R. Paquette,et al.  A Phase I Study of XL019, a Selective JAK2 Inhibitor, in Patients with Polycythemia Vera , 2008 .

[31]  H. Kantarjian,et al.  INCB018424, a Selective JAK1/2 Inhibitor, Significantly Improves the Compromised Nutritional Status and Frank Cachexia in Patients with Myelofibrosis (MF). , 2008 .

[32]  K. Bhalla,et al.  Co-Treatment with JAK2 Inhibitor TG101209 and Panobinostat or hsp90 Inhibitor AUY922 Attenuates Mutant JAK2-V617F Levels and Activity in Human Myeloproliferative Disorder Cells , 2008 .

[33]  D. Gilliland,et al.  A Phase I Study of XL019, a Selective JAK2 Inhibitor, in Patients with Primary Myelofibrosis, Post-Polycythemia Vera, or Post-Essential Thrombocythemia Myelofibrosis , 2008 .

[34]  H. Kantarjian,et al.  Characterization of JAK2 V617F Allele Burden in Advanced Myelofibrosis (MF) Patients: No Change in V617F:WT JAK2 Ratio in Patients with High Allele Burdens despite Profound Clinical Improvement Following Treatment with the JAK Inhibitor, INCB018424 , 2008 .

[35]  H. Kantarjian,et al.  The Clinical Phenotype of Myelofibrosis Encompasses a Chronic Inflammatory State That Is Favorably Altered by INCB018424, a Selective Inhibitor of JAK1/2 , 2008 .

[36]  J. Prchal,et al.  Preclinical Characterization of the JAK-2 Inhibitor, SGI-1252 , 2008 .

[37]  H. Kantarjian,et al.  Pegylated Interferon-ALFA-2A (PEG-IFN-α-2A; PEGASYS) Therapy Renders High Clinical and Molecular Response Rates in Patients with Essential Thrombocythemia (ET) and Polycythemia VERA (PV) , 2008 .

[38]  H. Kantarjian,et al.  The JAK Inhibitor, INCB018424, Demonstrates Durable and Marked Clinical Responses in Primary Myelofibrosis (PMF) and Post-Polycythemia/Essential Thrombocythemia Myelofibrosis (Post PV/ETMF). , 2008 .

[39]  A. Baruchel,et al.  Activating mutations in human acute megakaryoblastic leukemia. , 2008, Blood.

[40]  G. Wainreb,et al.  Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome , 2008, The Lancet.

[41]  A. Tefferi Molecular drug targets in myeloproliferative neoplasms: mutant ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB and FGFR1 , 2008, Journal of cellular and molecular medicine.

[42]  S. Chevret,et al.  Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. , 2008, Blood.

[43]  M. Wilson,et al.  Fragment-based discovery of JAK-2 inhibitors. , 2008, Bioorganic & medicinal chemistry letters.

[44]  J. Aster,et al.  Novel SSBP2‐JAK2 fusion gene resulting from a t(5;9)(q14.1;p24.1) in pre‐B acute lymphocytic leukemia , 2008, Genes, chromosomes & cancer.

[45]  T. Cenci,et al.  Epigenetic alteration of SOCS family members is a possible pathogenetic mechanism in JAK2 wild type myeloproliferative diseases , 2008, International journal of cancer.

[46]  J. Sanes,et al.  A chemical-genetic strategy reveals distinct temporal requirements for SAD-1 kinase in neuronal polarization and synapse formation , 2008, Neural Development.

[47]  R. Geffers,et al.  SOCS2: inhibitor of JAK2V617F-mediated signal transduction , 2008, Leukemia.

[48]  F. J. Novo,et al.  Low frequency of JAK2 exon 12 mutations in classic and atypical CMPDs. , 2008, Leukemia research.

[49]  Alexander W. Johnson,et al.  The brain‐derived neurotrophic factor receptor TrkB is critical for the acquisition but not expression of conditioned incentive value , 2008, The European journal of neuroscience.

[50]  W. Vainchenker,et al.  JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. , 2008, Blood.

[51]  A. Magis,et al.  Z3, a novel Jak2 tyrosine kinase small-molecule inhibitor that suppresses Jak2-mediated pathologic cell growth , 2008, Molecular Cancer Therapeutics.

[52]  Pawel Dobrzanski,et al.  Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. , 2008, Blood.

[53]  Y. Chung,et al.  Somatic Mutations of JAK1 and JAK3 in Acute Leukemias and Solid Cancers , 2008, Clinical Cancer Research.

[54]  J. O’Shea,et al.  Therapeutic targeting of Janus kinases , 2008, Immunological reviews.

[55]  H. Kanegane,et al.  Functional analysis of JAK3 mutations in transient myeloproliferative disorder and acute megakaryoblastic leukaemia accompanying Down syndrome , 2008, British journal of haematology.

[56]  R. Ravazzolo,et al.  A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11) in a patient with acute myeloid leukemia. , 2008, Cancer genetics and cytogenetics.

[57]  Chao Zhang,et al.  Inhibition of ZAP-70 Kinase Activity via an Analog-sensitive Allele Blocks T Cell Receptor and CD28 Superagonist Signaling*S⃞ , 2008, Journal of Biological Chemistry.

[58]  Stefan N Constantinescu,et al.  Substitution of Pseudokinase Domain Residue Val-617 by Large Non-polar Amino Acids Causes Activation of JAK2* , 2008, Journal of Biological Chemistry.

[59]  R. Wilson,et al.  Identification of somatic JAK1 mutations in patients with acute myeloid leukemia. , 2008, Blood.

[60]  D. Rossi,et al.  Epigenetic inactivation of suppressors of cytokine signalling in Philadelphia‐negative chronic myeloproliferative disorders , 2008, British journal of haematology.

[61]  Rakesh Nagarajan,et al.  Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. , 2008, Blood.

[62]  E. Clappier,et al.  Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia , 2008, The Journal of experimental medicine.

[63]  G. Noronha,et al.  Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors. , 2008, Cancer cell.

[64]  Sandra A. Moore,et al.  Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. , 2008, Cancer cell.

[65]  J. Gécz,et al.  Two novel JAK2 exon 12 mutations in JAK2V617F-negative polycythaemia vera patients , 2008, Leukemia.

[66]  Michael P Stryker,et al.  TrkB kinase is required for recovery, but not loss, of cortical responses following monocular deprivation , 2008, Nature Neuroscience.

[67]  M. Tomasson,et al.  The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes. , 2008, Blood.

[68]  T. Barbui,et al.  The histone deacetylase inhibitor ITF2357 selectively targets cells bearing mutated JAK2V617F , 2008, Leukemia.

[69]  E. Masuda,et al.  Novel Immunosuppression: R348, a JAK3- and Syk-Inhibitor Attenuates Acute Cardiac Allograft Rejection , 2008, Transplantation.

[70]  P. Changelian,et al.  The JAK-3 inhibitor CP-690550 is a potent anti-inflammatory agent in a murine model of pulmonary eosinophilia. , 2008, European journal of pharmacology.

[71]  H. Lodish,et al.  Dimerization by a Cytokine Receptor Is Necessary for Constitutive Activation of JAK2V617F* , 2008, Journal of Biological Chemistry.

[72]  B. Druker,et al.  RNAi screening of the tyrosine kinome identifies therapeutic targets in acute myeloid leukemia. , 2008, Blood.

[73]  M. Munchhof,et al.  The specificity of JAK3 kinase inhibitors. , 2008, Blood.

[74]  M. Meyerson,et al.  The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP , 2008, Proceedings of the National Academy of Sciences.

[75]  M. Cazzola,et al.  Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. , 2008, Blood.

[76]  C. Niemeyer,et al.  JAK2 mutations other than V617F: a novel mutation and mini review. , 2008, Leukemia research.

[77]  D. Steensma,et al.  JAK2 V617F and ringed sideroblasts: not necessarily RARS-T. , 2008, Blood.

[78]  P. Heinrich,et al.  Dual Role of the Jak1 FERM and Kinase Domains in Cytokine Receptor Binding and in Stimulation-Dependent Jak Activation1 , 2008, The Journal of Immunology.

[79]  R. Tiedt,et al.  Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. , 2007, Blood.

[80]  A. Green,et al.  The frequency of JAK2 exon 12 mutations in idiopathic erythrocytosis patients with low serum erythropoietin levels , 2007, Haematologica.

[81]  S. Fröhling,et al.  High-throughput sequence analysis of the tyrosine kinome in acute myeloid leukemia. , 2007, Blood.

[82]  Z. Bonday,et al.  SB1518: A Potent and Orally Active JAK2 Inhibitor for the Treatment of Myeloproliferative Disorders. , 2007 .

[83]  A. Green,et al.  AT9283, a Potent Inhibitor of JAK2, Is Active in JAK2 V617F Myeloproliferative Disease Models. , 2007 .

[84]  D. Gilliland,et al.  A Phase I Study of XL019, a Selective JAK2 Inhibitor, in Patients with Primary Myelofibrosis and Post-Polycythemia Vera/Essential Thrombocythemia Myelofibrosis. , 2007 .

[85]  K. Shah,et al.  Generation of an Analog-sensitive Syk Tyrosine Kinase for the Study of Signaling Dynamics from the B Cell Antigen Receptor* , 2007, Journal of Biological Chemistry.

[86]  S. Verstovsek,et al.  Discovery and Preclinical Characterization of INCB018424, a Selective JAK2 Inhibitor for the Treatment of Myeloproliferative Disorders. , 2007 .

[87]  T. Golub,et al.  Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. , 2007, Cancer cell.

[88]  P. Eyers,et al.  VX-680 Inhibits Aurora A and Aurora B Kinase Activity in Human Cells , 2007, Cell cycle.

[89]  J. Spivak,et al.  Phenotypic variations and new mutations in JAK2 V617F-negative polycythemia vera, erythrocytosis, and idiopathic myelofibrosis. , 2007, Experimental hematology.

[90]  E. Felip,et al.  Emerging drugs for non-small-cell lung cancer , 2007, Expert opinion on emerging drugs.

[91]  D. Gilliland,et al.  TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations , 2007, Leukemia.

[92]  D. Reinhardt,et al.  Janus kinase mutations in the development of acute megakaryoblastic leukemia in children with and without Down's syndrome , 2007, Leukemia.

[93]  A. Tefferi,et al.  Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera , 2007, Leukemia.

[94]  Chao Zhang,et al.  Enhanced selectivity for inhibition of analog-sensitive protein kinases through scaffold optimization , 2007 .

[95]  Alma L Burlingame,et al.  A semisynthetic epitope for kinase substrates , 2007, Nature Methods.

[96]  Mary Frances McMullin,et al.  The myeloproliferative disorder-associated JAK2 V617F mutant escapes negative regulation by suppressor of cytokine signaling 3. , 2007, Blood.

[97]  B. Wiese,et al.  The suppressor of cytokine signalling-1 (SOCS-1) gene is overexpressed in Philadelphia chromosome negative chronic myeloproliferative disorders. , 2007, Leukemia research.

[98]  D. Nižetić,et al.  Loss‐of‐function JAK3 mutations in TMD and AMKL of Down syndrome , 2007, British journal of haematology.

[99]  Clifford Liongue,et al.  Cytokine receptor signaling through the Jak-Stat-Socs pathway in disease. , 2007, Molecular immunology.

[100]  Chao Zhang,et al.  Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. , 2007, Nature chemical biology.

[101]  T. Awad,et al.  Chemical genetic transcriptional fingerprinting for selectivity profiling of kinase inhibitors. , 2007, Assay and drug development technologies.

[102]  W. Vainchenker,et al.  Novel activating JAK2 mutation in a patient with Down syndrome and B-cell precursor acute lymphoblastic leukemia. , 2007, Blood.

[103]  Biswanath De,et al.  Development of new pyrrolopyrimidine-based inhibitors of Janus kinase 3 (JAK3). , 2007, Bioorganic & medicinal chemistry letters.

[104]  K. Shokat,et al.  Chemical Genetics: Where Genetics and Pharmacology Meet , 2007, Cell.

[105]  N. Dhomen,et al.  New insight into BRAF mutations in cancer. , 2007, Current opinion in genetics & development.

[106]  S-J. Zhang,et al.  The investigation of JAK2 mutation in Chinese myeloproliferative diseases‐identification of a novel C616Y point mutation in a PV patient , 2007, International journal of laboratory hematology.

[107]  M. Stratton,et al.  JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. , 2007, The New England journal of medicine.

[108]  T. Naoe,et al.  JAK3 mutations occur in acute megakaryoblastic leukemia both in Down syndrome children and non-Down syndrome adults , 2007, Leukemia.

[109]  Xin Chen,et al.  Simplified staurosporine analogs as potent JAK3 inhibitors. , 2007, Bioorganic & medicinal chemistry letters.

[110]  R. V. van Etten,et al.  Molecular Pathogenesis and Therapy of Polycythemia Induced in Mice by JAK2 V617F , 2006, PloS one.

[111]  A. Dobrovic,et al.  Sensitive detection of KIT D816V in patients with mastocytosis. , 2006, Clinical chemistry.

[112]  L. Kanz,et al.  Detection of a new JAK2 D620E mutation in addition to V617F in a patient with polycythemia vera , 2006, Leukemia.

[113]  B. Druker,et al.  Characterization of murine JAK2V617F-positive myeloproliferative disease. , 2006, Cancer research.

[114]  T. Haferlach,et al.  Report on two novel nucleotide exchanges in the JAK2 pseudokinase domain: D620E and E627E , 2006, Leukemia.

[115]  Stephanie Kreis,et al.  Jaks and cytokine receptors--an intimate relationship. , 2006, Biochemical pharmacology.

[116]  Susan S. Taylor,et al.  Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism , 2006, Proceedings of the National Academy of Sciences.

[117]  M. Carroll,et al.  CEP-701 Is a JAK2 Inhibitor Which Attenuates JAK2/STAT5 Signaling Pathway and the Proliferation of Primary Cells from Patients with Myeloproliferative Disorders. , 2006 .

[118]  D. Bergstrom,et al.  MK-0457 Is a Novel Aurora Kinase and Janus Kinase 2 (JAK2) Inhibitor with Activity in Transformed JAK2-Positive Myeloproliferative Disease (MPD). , 2006 .

[119]  D. Bergstrom,et al.  MK-0457, a Novel Multikinase Inhibitor, Has Activity in Refractory AML, Including Transformed JAK2 Positive Myeloproliferative Disease (MPD), and in Philadelphia-Positive ALL. , 2006 .

[120]  D. Gilliland,et al.  MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. , 2006, Blood.

[121]  Biswanath De,et al.  Development of pyrimidine-based inhibitors of Janus tyrosine kinase 3. , 2006, Bioorganic & medicinal chemistry letters.

[122]  Asim Khwaja,et al.  Gö6976 is a potent inhibitor of the JAK 2 and FLT3 tyrosine kinases with significant activity in primary acute myeloid leukaemia cells , 2006, British journal of haematology.

[123]  Sandra A. Moore,et al.  JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. , 2006, Blood.

[124]  J. Maciejewski,et al.  Refractory anemia with ringed sideroblasts associated with marked thrombocytosis (RARS-T), another myeloproliferative condition characterized by JAK2 V617F mutation. , 2006, Blood.

[125]  B. Quesnel,et al.  High occurrence of JAK2 V617 mutation in refractory anemia with ringed sideroblasts associated with marked thrombocytosis , 2006, Leukemia.

[126]  Chao Zhang,et al.  JNK2 is a positive regulator of the cJun transcription factor. , 2006, Molecular cell.

[127]  W. Vainchenker,et al.  JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. , 2006, Blood.

[128]  D. Steensma JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology. , 2006, The Journal of molecular diagnostics : JMD.

[129]  G. Barton,et al.  Emerging roles of pseudokinases. , 2006, Trends in cell biology.

[130]  P. Jänne,et al.  Effect of Epidermal Growth Factor Receptor Tyrosine Kinase Domain Mutations on the Outcome of Patients with Non–Small Cell Lung Cancer Treated with Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors , 2006, Clinical Cancer Research.

[131]  R. Herbst,et al.  Epidermal Growth Factor Receptor Inhibitors in Development for the Treatment of Non–Small Cell Lung Cancer , 2006, Clinical Cancer Research.

[132]  Sandra A. Moore,et al.  MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia , 2006, PLoS medicine.

[133]  Sandra A. Moore,et al.  Activating alleles of JAK3 in acute megakaryoblastic leukemia. , 2006, Cancer cell.

[134]  D. Neuberg,et al.  Activated Jak2 with the V617F Point Mutation Promotes G1/S Phase Transition* , 2006, Journal of Biological Chemistry.

[135]  John Kuriyan,et al.  An Allosteric Mechanism for Activation of the Kinase Domain of Epidermal Growth Factor Receptor , 2006, Cell.

[136]  R. Levine,et al.  Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. , 2006, Blood.

[137]  Chao Zhang,et al.  Chemical genetic analysis of the time course of signal transduction by JNK. , 2006, Molecular cell.

[138]  S. H. Lee,et al.  The JAK2 V617F mutation in de novo acute myelogenous leukemias , 2006, Oncogene.

[139]  W. Vainchenker,et al.  An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. , 2006, Blood.

[140]  C. Copie-Bergman,et al.  A t(8;9) translocation with PCM1-JAK2 fusion in a patient with T-cell lymphoma , 2006, Leukemia.

[141]  P. Heinrich,et al.  Three Dileucine-like Motifs within the Interbox1/2 Region of the Human Oncostatin M Receptor Prevent Efficient Surface Expression in the Absence of an Associated Janus Kinase* , 2006, Journal of Biological Chemistry.

[142]  W. Weiss,et al.  Chemical genetic approaches to the development of cancer therapeutics. , 2006, Current opinion in genetics & development.

[143]  M. Schrappe,et al.  Mutational screen reveals a novel JAK2 mutation, L611S, in a child with acute lymphoblastic leukemia , 2006, Leukemia.

[144]  M. Eck,et al.  Crystal Structure of the FERM Domain of Focal Adhesion Kinase* , 2006, Journal of Biological Chemistry.

[145]  H. Lodish,et al.  Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[146]  S. Constantinescu,et al.  JAK1 and Tyk2 Activation by the Homologous Polycythemia Vera JAK2 V617F Mutation , 2005, Journal of Biological Chemistry.

[147]  M. Cazzola,et al.  Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. , 2005, Blood.

[148]  P. Brousset,et al.  The t(8;9)(p22;p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1-JAK2 fusion gene , 2005, Oncogene.

[149]  S. Bohlander,et al.  A BCR–JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia , 2005, Genes, chromosomes & cancer.

[150]  G. Xu,et al.  JAK2 Val617Phe activating tyrosine kinase mutation in juvenile myelomonocytic leukemia , 2005, Leukemia.

[151]  D. Oscier,et al.  Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. , 2005, Blood.

[152]  D. Birnbaum,et al.  PCM1-JAK2 fusion in myeloproliferative disorders and acute erythroid leukemia with t(8;9) translocation , 2005, Leukemia.

[153]  M. Meyerson,et al.  An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor. , 2005, Cancer research.

[154]  Jing Jiang,et al.  Janus kinase 2 enhances the stability of the mature growth hormone receptor. , 2005, Endocrinology.

[155]  T. Boggon,et al.  Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog. , 2005, Blood.

[156]  S. Constantinescu,et al.  Janus Kinases Affect Thrombopoietin Receptor Cell Surface Localization and Stability* , 2005, Journal of Biological Chemistry.

[157]  P. Heinrich,et al.  The Jak1 SH2 Domain Does Not Fulfill a Classical SH2 Function in Jak/STAT Signaling but Plays a Structural Role for Receptor Interaction and Up-regulation of Receptor Surface Expression* , 2005, Journal of Biological Chemistry.

[158]  Qingshan Li,et al.  Identification of an Acquired JAK2 Mutation in Polycythemia Vera* , 2005, Journal of Biological Chemistry.

[159]  Chao Zhang,et al.  A second-site suppressor strategy for chemical genetic analysis of diverse protein kinases , 2005, Nature Methods.

[160]  Kevan M Shokat,et al.  Features of selective kinase inhibitors. , 2005, Chemistry & biology.

[161]  Michael S. Cohen,et al.  Structural Bioinformatics-Based Design of Selective, Irreversible Kinase Inhibitors , 2005, Science.

[162]  Patricia L. Harris,et al.  Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[163]  M. Vihinen,et al.  KinMutBase: A registry of disease‐causing mutations in protein kinase domains , 2005, Human mutation.

[164]  Mario Cazzola,et al.  A gain-of-function mutation of JAK2 in myeloproliferative disorders. , 2005, The New England journal of medicine.

[165]  Stefan N. Constantinescu,et al.  A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera , 2005, Nature.

[166]  Xi Chen,et al.  A Chemical-Genetic Approach to Studying Neurotrophin Signaling , 2005, Neuron.

[167]  H. F. Barker,et al.  The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. , 2005, Cancer research.

[168]  Sandra A. Moore,et al.  Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. , 2005, Cancer cell.

[169]  K. Shokat,et al.  Bio-orthogonal affinity purification of direct kinase substrates. , 2005, Journal of the American Chemical Society.

[170]  P. Campbell,et al.  Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders , 2005, The Lancet.

[171]  J. Kere,et al.  Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. , 2005, American journal of human genetics.

[172]  H. Varmus,et al.  Acquired Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib Is Associated with a Second Mutation in the EGFR Kinase Domain , 2005, PLoS medicine.

[173]  L. Notarangelo,et al.  Jak3, severe combined immunodeficiency, and a new class of immunosuppressive drugs , 2005, Immunological reviews.

[174]  Marc C Nicklaus,et al.  Design and synthesis of conformationally constrained Grb2 SH2 domain binding peptides employing alpha-methylphenylalanyl based phosphotyrosyl mimetics. , 2005, Journal of medicinal chemistry.

[175]  S. Reed,et al.  A kinase-independent function of Cks1 and Cdk1 in regulation of transcription. , 2005, Molecular cell.

[176]  K. Shokat,et al.  Sole BCR-ABL inhibition is insufficient to eliminate all myeloproliferative disorder cell populations. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[177]  W. Leonard,et al.  Cytokines and immunodeficiency diseases: critical roles of the γc‐dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways , 2004, Immunological reviews.

[178]  J. Warmus,et al.  Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition , 2004, Nature Structural &Molecular Biology.

[179]  C. Parent Faculty Opinions recommendation of PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. , 2004 .

[180]  L. Silengo,et al.  PI3Kγ Modulates the Cardiac Response to Chronic Pressure Overload by Distinct Kinase-Dependent and -Independent Effects , 2004, Cell.

[181]  Ramaswamy Nilakantan,et al.  Antitumor Activity of HKI-272, an Orally Active, Irreversible Inhibitor of the HER-2 Tyrosine Kinase , 2004, Cancer Research.

[182]  Heung-Chin Cheng,et al.  A Novel Non-catalytic Mechanism Employed by the C-terminal Src-homologous Kinase to Inhibit Src-family Kinase Activity* , 2004, Journal of Biological Chemistry.

[183]  C. D. Krause,et al.  Interleukin-10 and related cytokines and receptors. , 2004, Annual review of immunology.

[184]  Cheng Luo,et al.  Inhibitors of JAKs/STATs and the kinases: a possible new cluster of drugs. , 2004, Drug discovery today.

[185]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[186]  P. Changelian,et al.  The Novel JAK‐3 Inhibitor CP‐690550 Is a Potent Immunosuppressive Agent in Various Murine Models , 2004, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[187]  Chao Zhang,et al.  Combinatorial efficacy achieved through two-point blockade within a signaling pathway-a chemical genetic approach. , 2003, Cancer research.

[188]  Chao Zhang,et al.  Bypassing a Kinase Activity with an ATP-Competitive Drug , 2003, Science.

[189]  J. O’Shea,et al.  Prevention of Organ Allograft Rejection by a Specific Janus Kinase 3 Inhibitor , 2003, Science.

[190]  W. Dietrich,et al.  A natural mutation in the Tyk2 pseudokinase domain underlies altered susceptibility of B10.Q/J mice to infection and autoimmunity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[191]  Clive McCarthy,et al.  Mapping the kinase domain of Janus Kinase 3. , 2003, Bioorganic & medicinal chemistry letters.

[192]  P. Heinrich,et al.  Principles of interleukin (IL)-6-type cytokine signalling and its regulation. , 2003, The Biochemical journal.

[193]  P. Comoglio,et al.  Mutations in the met Oncogene Unveil a “Dual Switch” Mechanism Controlling Tyrosine Kinase Activity* , 2003, Journal of Biological Chemistry.

[194]  Chao Zhang,et al.  Cutting Edge: A Chemical Genetic System for the Analysis of Kinases Regulating T Cell Development 1 , 2003, The Journal of Immunology.

[195]  K. Shokat,et al.  Engineering a "methionine clamp" into Src family kinases enhances specificity toward unnatural ATP analogues. , 2003, Biochemistry.

[196]  H C Clevers,et al.  Activation of the tumour suppressor kinase LKB1 by the STE20‐like pseudokinase STRAD , 2003, The EMBO journal.

[197]  L. Ashman,et al.  Constitutively active mutant D816VKit induces megakayocyte and mast cell differentiation of early haemopoietic cells from murine foetal liver. , 2003, Leukemia research.

[198]  A. Alcover,et al.  The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression , 2003, The EMBO journal.

[199]  T. Hakoshima,et al.  Structural basis of adhesion‐molecule recognition by ERM proteins revealed by the crystal structure of the radixin—ICAM‐2 complex , 2003, The EMBO journal.

[200]  G. Rishton Nonleadlikeness and leadlikeness in biochemical screening. , 2003, Drug discovery today.

[201]  Lewis C Cantley,et al.  Hitting the Target: Emerging Technologies in the Search for Kinase Substrates , 2002, Science's STKE.

[202]  O. Silvennoinen,et al.  The Pseudokinase Domain Is Required for Suppression of Basal Activity of Jak2 and Jak3 Tyrosine Kinases and for Cytokine-inducible Activation of Signal Transduction* , 2002, The Journal of Biological Chemistry.

[203]  P. Comoglio,et al.  Novel somatic mutations of the MET oncogene in human carcinoma metastases activating cell motility and invasion. , 2002, Cancer research.

[204]  Fabrizio Giordanetto,et al.  Prediction of the structure of human Janus kinase 2 (JAK2) comprising JAK homology domains 1 through 7. , 2002, Protein engineering.

[205]  Chao Zhang,et al.  Chemical Genetic Blockade of Transformation Reveals Dependence on Aberrant Oncogenic Signaling , 2002, Current Biology.

[206]  K. Shokat,et al.  Novel chemical genetic approaches to the discovery of signal transduction inhibitors. , 2002, Drug discovery today.

[207]  Claude Preudhomme,et al.  Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. , 2002, Blood.

[208]  J. Kuriyan,et al.  Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. , 2002, Cancer cell.

[209]  P. Heinrich,et al.  Orientational Constraints of the gp130 Intracellular Juxtamembrane Domain for Signaling* , 2002, The Journal of Biological Chemistry.

[210]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[211]  J. Kuriyan,et al.  The Conformational Plasticity of Protein Kinases , 2002, Cell.

[212]  D. Hilton,et al.  Regulation of Jak2 through the Ubiquitin-Proteasome Pathway Involves Phosphorylation of Jak2 on Y1007 and Interaction with SOCS-1 , 2002, Molecular and Cellular Biology.

[213]  N. Liverton,et al.  Photochemical preparation of a pyridone containing tetracycle: a Jak protein kinase inhibitor. , 2002, Bioorganic & medicinal chemistry letters.

[214]  P. Heinrich,et al.  Novel Role of Janus Kinase 1 in the Regulation of Oncostatin M Receptor Surface Expression* , 2002, The Journal of Biological Chemistry.

[215]  H. Lodish,et al.  The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. , 2001, Molecular cell.

[216]  J. Roberts,et al.  Unexpected effects of FERM domain mutations on catalytic activity of Jak3: structural implication for Janus kinases. , 2001, Molecular cell.

[217]  I. Kerr,et al.  Mapping of a Region within the N Terminus of Jak1 Involved in Cytokine Receptor Interaction* , 2001, The Journal of Biological Chemistry.

[218]  P. Bates,et al.  A region encompassing the FERM domain of Jak1 is necessary for binding to the cytokine receptor gp130 , 2001, FEBS letters.

[219]  J. Reilly,et al.  Identification of novel FLT‐3 Asp835 mutations in adult acute myeloid leukaemia , 2001, British journal of haematology.

[220]  A L Burlingame,et al.  Identification of New JNK Substrate Using ATP Pocket Mutant JNK and a Corresponding ATP Analogue* , 2001, The Journal of Biological Chemistry.

[221]  T. Naoe,et al.  Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. , 2001, Blood.

[222]  Anthony C. Bishop,et al.  Magic bullets for protein kinases. , 2001, Trends in cell biology.

[223]  H. Lodish,et al.  The erythropoietin receptor cytosolic juxtamembrane domain contains an essential, precisely oriented, hydrophobic motif. , 2001, Molecular cell.

[224]  B. Han,et al.  Protein 4.1R core domain structure and insights into regulation of cytoskeletal organization , 2000, Nature Structural Biology.

[225]  M. Hatada,et al.  Structure-based design of novel bicyclic nonpeptide inhibitors for the src SH2 domain. , 2000, Journal of medicinal chemistry.

[226]  Peter G. Schultz,et al.  A chemical switch for inhibitor-sensitive alleles of any protein kinase , 2000, Nature.

[227]  Toshio Hakoshima,et al.  Structural basis of the membrane‐targeting and unmasking mechanisms of the radixin FERM domain , 2000, The EMBO journal.

[228]  S. Pellegrini,et al.  A dual role for the kinase-like domain of the tyrosine kinase Tyk2 in interferon-alpha signaling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[229]  O. Silvennoinen,et al.  Regulation of the Jak2 Tyrosine Kinase by Its Pseudokinase Domain , 2000, Molecular and Cellular Biology.

[230]  P. Karplus,et al.  Structure of the ERM Protein Moesin Reveals the FERM Domain Fold Masked by an Extended Actin Binding Tail Domain , 2000, Cell.

[231]  L. Notarangelo,et al.  Complex Effects of Naturally Occurring Mutations in the JAK3 Pseudokinase Domain: Evidence for Interactions between the Kinase and Pseudokinase Domains , 2000, Molecular and Cellular Biology.

[232]  S. Pellegrini,et al.  The Janus kinase family of protein tyrosine kinases and their role in signaling , 1999, Cellular and Molecular Life Sciences CMLS.

[233]  J. Johnston,et al.  Autosomal SCID caused by a point mutation in the N‐terminus of Jak3: mapping of the Jak3–receptor interaction domain , 1999, The EMBO journal.

[234]  M. Goldsmith,et al.  Oligomerization and Scaffolding Functions of the Erythropoietin Receptor Cytoplasmic Tail* , 1999, The Journal of Biological Chemistry.

[235]  J. Girault,et al.  Janus Kinases and Focal Adhesion Kinases Play in the 4.1 Band: A Superfamily of Band 4.1 Domains Important for Cell Structure and Signal Transduction , 1998, Molecular medicine.

[236]  S. Hubbard,et al.  Autoregulatory Mechanisms in Protein-tyrosine Kinases* , 1998, The Journal of Biological Chemistry.

[237]  Yi Liu,et al.  Design of allele-specific inhibitors to probe protein kinase signaling , 1998, Current Biology.

[238]  S. Shoelson,et al.  Crystal Structure of the Tyrosine Phosphatase SHP-2 , 1998, Cell.

[239]  K. Shokat,et al.  Engineering Src family protein kinases with unnatural nucleotide specificity. , 1998, Chemistry & biology.

[240]  R Berger,et al.  A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. , 1997, Science.

[241]  M. Fellous,et al.  The amino-terminal region of Tyk2 sustains the level of interferon alpha receptor 1, a component of the interferon alpha/beta receptor. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[242]  P. Marynen,et al.  Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. , 1997, Blood.

[243]  Warren S. Alexander,et al.  A family of cytokine-inducible inhibitors of signalling , 1997, Nature.

[244]  S. Akira,et al.  Structure and function of a new STAT-induced STAT inhibitor , 1997, Nature.

[245]  Takaho A. Endo,et al.  A new protein containing an SH2 domain that inhibits JAK kinases , 1997, Nature.

[246]  T. Taniguchi,et al.  The amino terminus of JAK3 is necessary and sufficient for binding to the common gamma chain and confers the ability to transmit interleukin 2-mediated signals. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[247]  K. Shokat,et al.  Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[248]  S. Shoelson,et al.  Cellular effects of phosphotyrosine-binding domain inhibitors on insulin receptor signaling and trafficking , 1997, Molecular and cellular biology.

[249]  T. Roberts,et al.  Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways , 1997, Molecular and cellular biology.

[250]  S. Pestka,et al.  A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses , 1997, Molecular and cellular biology.

[251]  A. Kraft,et al.  The Amino-terminal Portion of the JAK2 Protein Kinase Is Necessary For Binding and Phosphorylation of the Granulocyte-Macrophage Colony-stimulating Factor Receptor β Chain (*) , 1995, The Journal of Biological Chemistry.

[252]  I. Kerr,et al.  Jaks and Stats in signaling by the cytokine receptor superfamily. , 1995, Trends in genetics : TIG.

[253]  A. Wilks,et al.  Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase , 1991, Molecular and cellular biology.

[254]  B. M. Jackson,et al.  Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression , 1990, Molecular and cellular biology.

[255]  G Vriend,et al.  WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.

[256]  H. Hasselbalch Myelofibrosis with myeloid metaplasia: the advanced phase of an untreated disseminated hematological cancer. Time to change our therapeutic attitude with early upfront treatment? , 2009, Leukemia research.

[257]  N. Gray,et al.  Targeting cancer with small molecule kinase inhibitors , 2009, Nature Reviews Cancer.

[258]  Mindy I. Davis,et al.  A quantitative analysis of kinase inhibitor selectivity , 2008, Nature Biotechnology.

[259]  B. Druker,et al.  Effects of CYT387, a potent novel JAK2 inhibitor on JAK2-V617F induced MPD , 2008 .

[260]  K. Takenaka,et al.  Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F , 2008, Leukemia.

[261]  T. Barbui,et al.  From palliation to epigenetic therapy in myelofibrosis. , 2008, Hematology. American Society of Hematology. Education Program.

[262]  A. Pardanani JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials , 2008, Leukemia.

[263]  D. Gilliland,et al.  TG101348, a JAK2-selective antagonist, inhibits primary hematopoietic cells derived from myeloproliferative disorder patients with JAK2V617F, MPLW515K or JAK2 exon 12 mutations as well as mutation negative patients , 2008, Leukemia.

[264]  D. Gilliland,et al.  TG 101209 , a small molecule JAK 2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK 2 V 617 F and MPL W 515 L / K mutations , 2007 .

[265]  A. Aventín,et al.  Occurrence of the JAK2 V617F mutation in the WHO provisional entity: myelodysplastic/myeloproliferative disease, unclassifiable-refractory anemia with ringed sideroblasts associated with marked thrombocytosis. , 2006, Haematologica.

[266]  J. Rossjohn,et al.  The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. , 2006, Blood.

[267]  S. Heck,et al.  Genetically engineered mouse models for drug discovery: new chemical genetic approaches. , 2004, Current drug discovery technologies.

[268]  K. Shokat,et al.  A chemical genetic screen for direct v-Src substrates reveals ordered assembly of a retrograde signaling pathway. , 2002, Chemistry & biology.

[269]  P. Heinrich,et al.  Structural requirements of the interleukin-6 signal transducer gp130 for its interaction with Janus kinase 1: the receptor is crucial for kinase activation. , 2002, The Biochemical journal.

[270]  K. Shokat,et al.  Mutant tyrosine kinases with unnatural nucleotide specificity retain the structure and phospho-acceptor specificity of the wild-type enzyme. , 2002, Chemistry & biology.

[271]  K. Liedl,et al.  Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. , 2001, Protein engineering.

[272]  B. Dong,et al.  Alternative function of a protein kinase homology domain in 2', 5'-oligoadenylate dependent RNase L. , 1999, Nucleic acids research.