Prediction of the strength distribution for unidirectional fibre reinforced composites

Abstract A statistical model is proposed which predicts the strength distribution of composites. It accounts for the following parameters: fibre strength distribution, fibre spatial distribution, fibre-matrix interface properties, matrix plasticity, load transfer at broken fibres and load profile of the specimen (bending or tension). The model is solved via Monte Carlo simulation for small specimens and via an analytical approach for large parts. Both techniques predict well the strength distribution of the composite. Aluminium matrix composites reinforced with unidirectional ceramic fibres show a large scatter in three point bending strength. This scatter is caused by the probability that a cluster of broken fibres of a critical size occurs at a given stress level. When the limiting stress is reached the critical cluster grows in an unstable way leading to catastrophic failure of the specimen. The results obtained by this model agree favourably with the experimental findings and indicate that strength prediction using other concepts, like fracture mechanics, global load sharing, a simple rule of mixtures or Weibull statistics, is unreliable for predicting the strength of large composites.

[1]  T. Chou,et al.  Monte Carlo Simulation of the Strength of Hybrid Composites , 1982 .

[2]  John M. Hedgepeth,et al.  Local Stress Concentrations in Imperfect Filamentary Composite Materials , 1967 .

[3]  M. Lienkamp,et al.  Assessment of overload profiles and interfacial shear strength in unidirectional fibre composites via quantitative fractography , 1994 .

[4]  Lorenz S. Sigl,et al.  Effect of Interface Mechanical Properties on Pullout in a SiC‐Fiber‐Reinforced Lithium Aluminum Silicate Glass‐Ceramic , 1989 .

[5]  H. Fukuda,et al.  On the strength distribution of unidirectional fibre composites , 1977 .

[6]  C. Hom,et al.  Large scale bridging in brittle matrix composites , 1990 .

[7]  A. Evans,et al.  THE ULTIMATE TENSILE STRENGTH OF METAL AND CERAMIC-MATRIX COMPOSITES , 1993 .

[8]  A. Evans,et al.  The mechanical properties of Al alloys reinforced with continuous Al2O3 fibers , 1992 .

[9]  S.J. Fariborz,et al.  The Tensile Behavior of Intraply Hybrid Composites I: Model and Simulation , 1985 .

[10]  Anthony G. Evans,et al.  Overview no. 85 The mechanical behavior of ceramic matrix composites , 1989 .

[11]  C. Zweben,et al.  Tensile failure of fiber composites. , 1968 .

[12]  A. Kelly,et al.  Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum , 1965 .

[13]  M. G. Bader,et al.  Monte Carlo simulation of the strength of composite fibre bundles , 1982 .

[14]  B. W. Rosen,et al.  Tensile failure of fibrous composites. , 1964 .

[15]  R. L. Smith,et al.  A comparison of probabilistic techniques for the strength of fibrous materials under local load-sharing among fibers☆ , 1983 .

[16]  Robert Danzer,et al.  A general strength distribution function for brittle materials , 1992 .

[17]  S. L. Phoenix,et al.  The Chain-of-Bundles Probability Model For the Strength of Fibrous Materials I: Analysis and Conjectures , 1978 .

[18]  K. Schulte,et al.  Strain concentration factors for fibers and matrix in unidirectional composites , 1991 .

[19]  E. F. Rybicki,et al.  Effect of Stacking Sequence and Lay-Up Angle on Free Edge Stresses Around a Hole in a Laminated Plate Under Tension , 1978 .

[20]  A. Giannakopoulos,et al.  Synergism of Toughening Mechanisms in Whisker‐Reinforced Ceramic‐Matrix Composites , 1991 .

[21]  Bernard D. Coleman,et al.  On the strength of classical fibres and fibre bundles , 1958 .

[22]  A. Evans,et al.  The mode I fracture resistance of unidirectional fiber-reinforced aluminum matrix composites , 1992 .