A Novel Millimeter-Wave Dual-Fed Phased Array for Beam Steering

A novel beam-steering approach is presented based on the superposition of two squinted antenna beams. The two antenna beams are realized by exciting the opposite feeds of a dual-fed array antenna. A change in phase difference and amplitude ratio between the input signals, possibly using only one phase shifter and one variable gain amplifier, steers the main beam in different directions. Additionally, sum and difference patterns can be obtained using this concept, allowing for a monopulse operation with a broad peak or a deep null at broadside. Using this approach, beam nulls can also be steered toward interference directions, while keeping the shape and direction of the main beam unchanged. To verify the concept, a 77-GHz demonstrator using a linear patch array antenna and monolithic microwave integrated circuit in-phase/quadrature modulators has been designed and fabricated. The measurement results show a beam-scanning range of 16 °, well in accord with the simulation results.

[1]  A. Babakhani,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting , 2006, IEEE Journal of Solid-State Circuits.

[2]  E. Yamashita,et al.  Analysis of Microstrip-Like Transmission Lines by Nonuniform Discretization of Integral Equations , 1976 .

[3]  Ali M. Niknejad,et al.  mm-Wave Silicon Technology: 60 GHz and Beyond , 2008 .

[4]  Gabriel M. Rebeiz,et al.  94 GHz integrated horn monopulse antennas , 1992 .

[5]  T. Zwick,et al.  Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band , 2012, IEEE Transactions on Microwave Theory and Techniques.

[6]  Hong-Yeh Chang,et al.  A broadband HBT MMIC IQ modulator and millimeter-wave vector signal characterization , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[7]  G.M. Rebeiz,et al.  A Q-band (40–45 GHz) 16-element phased-array transmitter in 0.18-μm SiGe BiCMOS technology , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[8]  M. V. Schneider,et al.  Microstrip lines for microwave integrated circuits , 1969 .

[9]  J. Wenger,et al.  Automotive radar - status and perspectives , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[10]  I. Sarkas,et al.  W-band 65-nm CMOS and SiGe BiCMOS transmitter and receiver with lumped I-Q phase shifters , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[11]  H. A. Wheeler Transmission-Line Properties of Parallel Strips Separated by a Dielectric Sheet , 1965 .

[12]  R. Weigel,et al.  Embedded wafer level ball grid array (eWLB) technology for millimeter-wave applications , 2011, 2011 IEEE 13th Electronics Packaging Technology Conference.

[13]  Ali Hajimiri,et al.  A Bidirectional RF-Combining 60GHz Phased-Array Front-End , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[14]  Duixian Liu,et al.  Advanced millimeter-wave technologies : antennas, packaging and circuits , 2009 .

[15]  Janusz Grzyb,et al.  Advanced Millimeter-Wave Technologies , 2009 .

[16]  A. Rydberg,et al.  Electrically Steerable Single-Layer Microstrip Traveling Wave Antenna With Varactor Diode Based Phase Shifters , 2007, IEEE Transactions on Antennas and Propagation.

[17]  P. Bhartia,et al.  Millimeter-wave microstrip and printed circuit antennas , 1991 .

[18]  Andreas Stelzer,et al.  A phased-array radar transmitter based on 77-GHz cascadable transceivers , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[19]  R. Emrick,et al.  Technology for emerging commercial applications at millimeter-wave frequencies , 2005, IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005..

[20]  Danial Ehyaie,et al.  Novel Approaches to the Design of Phased Array Antennas , 2012 .

[21]  W. Menzel,et al.  Microstrip to waveguide transition compatible with MM-wave integrated circuits , 1994 .

[22]  M.M. Dawoud,et al.  Null Steering in Adaptive Arrays using a Genetic Algorithm , 1994, 1994 24th European Microwave Conference.

[23]  R. H. Jansen,et al.  Accurate model for open end effect of microstrip lines , 1981 .

[24]  R. Ramadoss,et al.  Coplanar patch antenna fed at the non-radiating edge , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[25]  L. Q. Bui,et al.  Waveguide-to-microstrip transitions for millimeter-wave applications , 1988, 1988., IEEE MTT-S International Microwave Symposium Digest.

[26]  M. Kobayashi,et al.  A dispersion formula satisfying recent requirements in microstrip CAD , 1988 .

[27]  Jurgen Hasch,et al.  Compact Topside Millimeter-Wave Waveguide-to-Microstrip Transitions , 2013, IEEE Microwave and Wireless Components Letters.

[28]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[29]  A. Hajimiri,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas , 2006, IEEE Journal of Solid-State Circuits.

[30]  Vyacheslav Tuzlukov,et al.  Null steering beamforming for wireless communication system using genetic algorithm , 2011, 2011 IEEE International Conference on Microwave Technology & Computational Electromagnetics.

[31]  L. Hyvonen,et al.  A compact MMIC-compatible microstrip to waveguide transition , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[32]  A. Stelzer,et al.  A Vertical Transition Between Rectangular Waveguide and Coupled Microstrip Lines , 2012, IEEE Microwave and Wireless Components Letters.

[33]  S. Lucyszyn,et al.  A W-band vector modulator and its application to software radar for automotive collision avoidance , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[34]  E. Yamashita,et al.  An Approximate Dispersion Formula of Microstrip Lines for Computer Aided Design of Microwave Integrated Circuits , 1979, 1979 IEEE MTT-S International Microwave Symposium Digest.

[35]  A. Hajimiri,et al.  A fully integrated 24-GHz phased-array transmitter in CMOS , 2005, IEEE Journal of Solid-State Circuits.

[36]  D. Parker,et al.  Microwave industry outlook - defense applications , 2002 .

[37]  T. Metzler Microstrip series arrays , 1981 .

[38]  Erik O. Hammerstad,et al.  Equations for Microstrip Circuit Design , 1975, 1975 5th European Microwave Conference.

[39]  Gabriel M. Rebeiz,et al.  A 76–84-GHz 16-Element Phased-Array Receiver With a Chip-Level Built-In Self-Test System , 2013, IEEE Transactions on Microwave Theory and Techniques.

[40]  N. Kikuma,et al.  Broadband and planar microstrip-to-waveguide transitions in millimeter-wave band , 2008, 2008 International Conference on Microwave and Millimeter Wave Technology.

[41]  R. Jansen,et al.  Accurate model for effective dielectric constant of microstrip with validity up to millimetre-wave frequencies , 1982 .

[42]  Amir Mortazawi,et al.  A new approach to design low cost, low complexity phased arrays , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[43]  Nicolaos G. Alexopoulos,et al.  Frequency-independent equivalent circuit model for microstrip open-end and gap discontinuities , 1994 .

[44]  E. Yamashita,et al.  Microstrip Dispersion in a Wide-Frequency Range , 1981 .

[45]  D. Parker,et al.  Phased arrays - part 1: theory and architectures , 2002 .

[46]  A. Tombak,et al.  A novel low-cost beam-steering technique based on the extended-resonance power-dividing method , 2004, IEEE Transactions on Microwave Theory and Techniques.

[47]  G. Rebeiz,et al.  Silicon RFICs for phased arrays , 2009, IEEE Microwave Magazine.

[48]  T. Zwick,et al.  QFN based packaging concepts for millimeter-wave transceivers , 2012, 2012 IEEE International Workshop on Antenna Technology (iWAT).

[49]  Kai Chang,et al.  Low-cost monopulse antenna using bi-directionally-fed microstrip patch array , 2003 .

[50]  Gabriel M. Rebeiz,et al.  A W-band dielectric-lens-based integrated monopulse radar receiver , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[51]  C. P. Hartwig,et al.  Losses in Microstrip , 1968 .

[52]  A. Van de Capelle,et al.  A model for calculating the radiation field of microstrip antennas , 1979 .

[53]  A. Stelzer,et al.  A Fully Differential 77-GHz Active IQ Modulator in a Silicon-Germanium Technology , 2008, IEEE Microwave and Wireless Components Letters.

[54]  B. Jones,et al.  The synthesis of shaped patterns with series-fed microstrip patch arrays , 1982 .

[55]  Hiroyo Ogawa,et al.  Gap-coupled patch-type waveguide-to-microstrip transition on single-layer dielectric substrate at V-band , 2004 .

[56]  H.A.C. Tilmans,et al.  Design considerations and technology assessment of phased-array antenna systems with RF MEMS for automotive radar applications , 2005, IEEE Transactions on Microwave Theory and Techniques.

[57]  E. Hammerstad,et al.  Accurate Models for Microstrip Computer-Aided Design , 1980, 1980 IEEE MTT-S International Microwave symposium Digest.

[58]  V. P. Trivedi,et al.  An RCP Packaged Transceiver Chipset for Automotive LRR and SRR Systems in SiGe BiCMOS Technology , 2012, IEEE Transactions on Microwave Theory and Techniques.

[59]  Ghassan Yassin,et al.  A Full-Height Waveguide to Thin-Film Microstrip Transition with Exceptional RF Bandwidth and Coupling Efficiency , 2003 .

[60]  D. Parker,et al.  Phased arrays-part II: implementations, applications, and future trends , 2002 .