Multiscale modeling in granular flow

Granular materials are common in everyday experience, but have long-resisted a complete theoretical description. Here, we consider the regime of slow, dense granular flow, for which there is no general model, representing a considerable hurdle to industry, where grains and powders must frequently be manipulated. Much of the complexity of modeling granular materials stems from the discreteness of the constituent particles, and a key theme of this work has been the connection of the microscopic particle motion to a bulk continuum description. This led to development of the "spot model", which provides a microscopic mechanism for particle rearrangement in dense granular flow, by breaking down the motion into correlated group displacements on a mesoscopic length scale. The spot model can be used as the basis of a multiscale simulation technique which can accurately reproduce the flow in a large-scale discrete element simulation of granular drainage, at a fraction of the computational cost. In addition, the simulation can also successfully track microscopic packing signatures, making it one of the first models of a flowing random packing. To extend to situations other than drainage ultimately requires a treatment of material properties, such as stress and strain-rate, but these quantities are difficult to define in a granular packing, due to strong heterogeneities at the level of a single particle. However, they can be successfully interpreted at the mesoscopic spot scale, and this information can be used to directly test some commonly-used hypotheses in modeling granular materials, providing insight into formulating a general theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

[1]  B. Chakraborty,et al.  Spatially heterogenous dynamics in dense, driven granular flows , 2007, cond-mat/0702671.

[2]  A. Kudrolli,et al.  Velocity correlations in dense granular flows observed with internal imaging. , 2006, Physical review letters.

[3]  Francine Battaglia,et al.  Dynamics and structures of segregation in a dense, vibrating granular bed. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Martin Z. Bazant,et al.  The stochastic flow rule: a multi-scale model for granular plasticity , 2006, cond-mat/0611391.

[5]  M. Bazant,et al.  Stochastic flow rule for granular materials. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Y. Forterre,et al.  A constitutive law for dense granular flows , 2006, Nature.

[7]  C. Rycroft,et al.  Analysis of granular flow in a pebble-bed nuclear reactor. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  G. Grest,et al.  Plug flow and the breakdown of Bagnold scaling in cohesive granular flows. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Joshua J. Cogliati,et al.  METHODS FOR MODELING THE PACKING OF FUEL ELEMENTS IN PEBBLE BED REACTORS , 2005 .

[10]  G. Grest,et al.  Three-dimensional shear in granular flow. , 2005, Physical review letters.

[11]  L. Tsimring,et al.  Patterns and collective behavior in granular media: Theoretical concepts , 2005, cond-mat/0507419.

[12]  T. Majmudar,et al.  Contact force measurements and stress-induced anisotropy in granular materials , 2005, Nature.

[13]  B. Chakraborty,et al.  Stress and large-scale spatial structures in dense, driven granular flows. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Jean-Noël Roux,et al.  Rheophysics of dense granular materials: discrete simulation of plane shear flows. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  C. Rycroft,et al.  Dynamics of random packings in granular flow. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  M. Bazant The Spot Model for random-packing dynamics , 2005, cond-mat/0501130.

[17]  J. Gollub,et al.  Slowly sheared dense granular flows: crystallization and nonunique final states. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  S. Morris,et al.  Subdiffusive axial transport of granular materials in a long drum mixer. , 2004, Physical Review Letters.

[19]  T. Shinbrot Granular materials: The brazil nut effect — in reverse , 2004, Nature.

[20]  Aibing Yu,et al.  Steady-state granular flow in a three-dimensional cylindrical hopper with flat bottom: microscopic analysis , 2004 .

[21]  Z. S. Khan,et al.  Oscillatory granular segregation in a long drum mixer , 2004 .

[22]  R. Behringer,et al.  Transients in sheared granular matter , 2004, The European physical journal. E, Soft matter.

[23]  F. Stillinger,et al.  Improving the Density of Jammed Disordered Packings Using Ellipsoids , 2004, Science.

[24]  F. Stillinger,et al.  Jamming in hard sphere and disk packings , 2004 .

[25]  G. Midi,et al.  On dense granular flows , 2003, The European physical journal. E, Soft matter.

[26]  R. Rosales,et al.  Diffusion and mixing in gravity-driven dense granular flows. , 2003, Physical review letters.

[27]  Salvatore Torquato,et al.  Local density fluctuations, hyperuniformity, and order metrics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Martin van Hecke,et al.  Kinematics: Wide shear zones in granular bulk flow , 2003, Nature.

[29]  J. Gollub,et al.  Internal granular dynamics, shear-induced crystallization, and compaction steps. , 2003, Physical review letters.

[30]  Andrea J. Liu,et al.  Jamming at zero temperature and zero applied stress: the epitome of disorder. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  B. Chakraborty,et al.  Impulse distributions in dense granular flows: Signatures of large-scale spatial structures , 2003, cond-mat/0301201.

[32]  H. Herrmann,et al.  Comparing simulation and experiment of a 2D granular Couette shear device , 2002, The European physical journal. E, Soft matter.

[33]  G. Grest,et al.  Confined granular packings: structure, stress, and forces. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Salvatore Torquato,et al.  Diversity of order and densities in jammed hard-particle packings. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  G. Grest,et al.  Statistics of the contact network in frictional and frictionless granular packings. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  W. K. Terry,et al.  Direct Deterministic Method for Neutronics Analysis and Computation of Asymptotic Burnup Distribution in a Recirculating Pebble-Bed Reactor , 2002 .

[37]  A. Lemaître A Dynamical Approach to Glassy Materials , 2002, cond-mat/0206417.

[38]  G. Grest,et al.  Granular flow down a rough inclined plane: Transition between thin and thick piles , 2002, cond-mat/0206188.

[39]  Deniz Ertas,et al.  Granular gravitational collapse and chute flow , 2002, cond-mat/0206046.

[40]  W. K. Terry,et al.  Matrix Formulation of Pebble Circulation in the PEBBED Code , 2002 .

[41]  G. Grest,et al.  Geometry of frictionless and frictional sphere packings. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  L. Tsimring,et al.  Continuum theory of partially fluidized granular flows. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  A. Lemaître Rearrangements and dilatancy for sheared dense materials. , 2001, Physical review letters.

[44]  A. Lemaître Origin of a repose angle: kinetics of rearrangement for granular materials. , 2001, Physical review letters.

[45]  Lynn F. Gladden,et al.  Structure of packed beds probed by Magnetic Resonance Imaging , 2001 .

[46]  G. Grest,et al.  Granular flow down an inclined plane: Bagnold scaling and rheology. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  D. R. Nicholls,et al.  The Pebble Bed Modular Reactor , 2001 .

[48]  H. Jaeger,et al.  Force distributions in three-dimensional granular assemblies: effects of packing order and interparticle friction. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  L. Tsimring,et al.  Continuum description of avalanches in granular media. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  J. Gollub,et al.  Particle dynamics in sheared granular matter , 2000, Physical review letters.

[51]  Daniel M. Mueth,et al.  Signatures of granular microstructure in dense shear flows , 2000, Nature.

[52]  Thomas M Truskett,et al.  Is random close packing of spheres well defined? , 2000, Physical review letters.

[53]  Schofield,et al.  Three-dimensional direct imaging of structural relaxation near the colloidal glass transition , 2000, Science.

[54]  Christian Veje,et al.  Stress Fluctuations in a 2D Granular Couette Experiment: A Continuous Transition , 1999 .

[55]  A. Samadani,et al.  Size segregation of granular matter in silo discharges. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  César Treviño,et al.  Velocity field measurements in granular gravity flow in a near 2D silo , 1998 .

[57]  César Treviño,et al.  Experimental study of the tracer in the granular flow in a 2D silo , 1998 .

[58]  Andrea J. Liu,et al.  Nonlinear dynamics: Jamming is not just cool any more , 1998, Nature.

[59]  T. Shinbrot,et al.  Reverse Buoyancy in Shaken Granular Beds , 1998 .

[60]  Steven J. Plimpton,et al.  STRINGLIKE COOPERATIVE MOTION IN A SUPERCOOLED LIQUID , 1998 .

[61]  Daniel M. Mueth,et al.  FORCE DISTRIBUTION IN A GRANULAR MEDIUM , 1998, cond-mat/9902282.

[62]  Sam F. Edwards,et al.  The equations of stress in a granular material , 1998 .

[63]  J. Langer,et al.  Dynamics of viscoplastic deformation in amorphous solids , 1997, cond-mat/9712114.

[64]  T. Boutreux,et al.  Compaction of granular mixtures: a free volume model , 1997 .

[65]  David M. Raup,et al.  How Nature Works: The Science of Self-Organized Criticality , 1997 .

[66]  Douglas J. Durian,et al.  Diffusing-Wave Spectroscopy of Dynamics in a Three-Dimensional Granular Flow , 1997, Science.

[67]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[68]  Bradley C. Kuszmaul,et al.  Cilk: an efficient multithreaded runtime system , 1995, PPOPP '95.

[69]  H. Jaeger,et al.  Physics of the Granular State , 1992, Science.

[70]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[71]  Robert P. Behringer,et al.  Cellular automata models for the flow of granular materials , 1991 .

[72]  Caram,et al.  Random-walk approach to granular flows. , 1991, Physical review letters.

[73]  B. Lubachevsky,et al.  Geometric properties of random disk packings , 1990 .

[74]  Behringer,et al.  Cellular automata models of granular flow. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[75]  E. Liniger,et al.  Random loose packings of uniform spheres and the dilatancy onset. , 1990, Physical review letters.

[76]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[77]  C. Tien,et al.  Analysis of flow channeling near the wall in packed beds , 1987 .

[78]  E. Bruce Pitman,et al.  Stability of time dependent compressible granular flow in two dimensions , 1987 .

[79]  J. S. Goodling,et al.  Radial porosity distribution in cylindrical beds packed with spheres , 1983 .

[80]  J. Jenkins,et al.  A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles , 1983, Journal of Fluid Mechanics.

[81]  A. B. Metzner,et al.  Wall effects in laminar flow of fluids through packed beds , 1981 .

[82]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .

[83]  R. M. Nedderman,et al.  Experimental evidence supporting kinematic modelling of the flow of granular media in the absence of air drag , 1979 .

[84]  S. Savage,et al.  Gravity flow of cohesionless granular materials in chutes and channels , 1979, Journal of Fluid Mechanics.

[85]  W. W. Mullins,et al.  Critique and comparison of two stochastic theories of gravity-induced particle flow , 1979 .

[86]  R. M. Nedderman,et al.  A kinematic model for the flow of granular materials , 1979 .

[87]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[88]  Frans Spaepen,et al.  A microscopic mechanism for steady state inhomogeneous flow in metallic glasses , 1977 .

[89]  W. W. Mullins,et al.  Stochastic Theory of Particle Flow under Gravity , 1972 .

[90]  David Turnbull,et al.  Molecular Transport in Liquids and Glasses , 1959 .

[91]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[92]  Andrew C. Kadak,et al.  Pebble Flow Experiments For Pebble Bed Reactors , 2004 .

[93]  S. Torquato Random Heterogeneous Materials , 2002 .

[94]  Pierre A. Gremaud,et al.  On the Computation of Steady Hopper Flows: I. Stress Determination for Coulomb Materials , 2001 .

[95]  Leo P. Kadanoff,et al.  Built upon sand: Theoretical ideas inspired by granular flows , 1999 .

[96]  R. Behringer,et al.  KINEMATICS OF A TWO-DIMENSIONAL GRANULAR COUETTE EXPERIMENT AT THE TRANSITION TO SHEARING , 1999 .

[97]  P. G. de Gennes,et al.  Granular Matter: A Tentative View , 1999 .

[98]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[99]  K. K. Rao Statics and kinematics of granular materials , 1995 .

[100]  David G. Schaeffer,et al.  Instability in the evolution equations describing incompressible granular flow , 1987 .

[101]  J. Schuster,et al.  Evaluation of steady flow profiles in rectangular and circular packed beds by a variational method , 1983 .

[102]  W. W. Mullins,et al.  Experimental evidence for the stochastic theory of particle flow under gravity , 1974 .

[103]  A. Schofield,et al.  Critical State Soil Mechanics , 1968 .

[104]  J. Litwiniszyn Statistical methods in the mechanics of granular bodies , 1961 .

[105]  M. Bazant,et al.  Computational Simulations of Granular Materials with Periodic Boundary Conditions using the Spot Model , 2022 .