Evaluation of N‐benzyl‐N‐[11C]methyl‐2‐ (7‐methyl‐8‐oxo‐2‐phenyl‐7,8‐dihydro‐9H‐purin‐9‐yl)acetamide ([11C]DAC) as a novel translocator protein (18 kDa) radioligand in kainic acid‐lesioned rat

The aim of this study was to evaluate N‐benzyl‐N‐[11C]methyl‐2‐(7‐methyl‐8‐oxo‐2‐phenyl‐7,8‐dihydro‐9H‐purin‐9‐yl)acetamide ([11C]DAC) as a new translocator protein (18 kDa) [TSPO, formerly known as the peripheral‐type benzodiazepine receptor (PBR)] positron emission tomography (PET) ligand in normal mice and unilateral kainic acid (KA)‐lesioned rats. DAC is a derivative of AC‐5216, which is a potent and selective PET ligand for the clinical investigation of TSPO. The binding affinity and selectivity of DAC for TSPO were similar to those of AC‐5216, and DAC was less lipophilic than AC‐5216. The distribution pattern of [11C]DAC was in agreement with TSPO distribution in rodents. No radioactive metabolite of [11C]DAC was found in the mouse brain, although it was metabolized rapidly in mouse plasma. Using small‐animal PET, we examined the in vivo binding of [11C]DAC for TSPO in KA‐lesioned rats. [11C]DAC and [11C]AC‐5216 exhibited similar brain uptake in the lesioned and nonlesioned striatum, respectively. The binding of [11C]DAC to TSPO was increased significantly in the lesioned striatum, and [11C]DAC showed good contrast between the lesioned and nonlesioned striatum (the maximum ratio was about threefold). In displacement experiments, the uptake of [11C]DAC in the lesioned striatum was eventually blocked using an excess of either unlabeled DAC or PK11195 injected. [11C]DAC had high in vivo specific binding to TSPO in the injured rat brain. Therefore, [11C]DAC is a useful PET ligand for TSPO imaging, and its specific binding to TSPO is suitable as a new biomarker for brain injury. Synapse 63:961–971, 2009. © 2009 Wiley‐Liss, Inc.

[1]  M. Imaizumi,et al.  PET imaging with [ 11 C ] PBR 28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat , 2006 .

[2]  Abraham Weizman,et al.  Enigma of the peripheral benzodiazepine receptor. , 1999, Pharmacological reviews.

[3]  Tetsuya Suhara,et al.  Longitudinal, Quantitative Assessment of Amyloid, Neuroinflammation, and Anti-Amyloid Treatment in a Living Mouse Model of Alzheimer's Disease Enabled by Positron Emission Tomography , 2007, The Journal of Neuroscience.

[4]  Philippe Hantraye,et al.  11C-DPA-713: A Novel Peripheral Benzodiazepine Receptor PET Ligand for In Vivo Imaging of Neuroinflammation , 2007, Journal of Nuclear Medicine.

[5]  A. Gee,et al.  The peripheral benzodiazepine receptor ligand PK11195 binds with high affinity to the acute phase reactant alpha1-acid glycoprotein: implications for the use of the ligand as a CNS inflammatory marker. , 2003, Nuclear medicine and biology.

[6]  F. Yasuno,et al.  Increased Binding of Peripheral Benzodiazepine Receptor in Alzheimer's Disease Measured by Positron Emission Tomography with [11C]DAA1106 , 2008, Biological Psychiatry.

[7]  Yuji Nagai,et al.  Novel peripheral benzodiazepine receptor ligand [11C]DAA1106 for PET: An imaging tool for glial cells in the brain , 2004, Synapse.

[8]  B. Gulyás,et al.  Brain Uptake and Plasma Metabolism of [11C]Vinpocetine: A Preliminary PET Study in a Cynomolgus Monkey , 1999, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[9]  Ariel Miller,et al.  Imaging brain inflammation Marco Rovaris, Massimo Filippi , 2001 .

[10]  Akiko Hatori,et al.  In vitro and ex vivo autoradiography studies on peripheral-type benzodiazepine receptor binding using [11C]AC-5216 in normal and kainic acid-lesioned rats , 2007, Neuroscience Letters.

[11]  R. Anholt,et al.  Peripheral-type benzodiazepine receptors: autoradiographic localization in whole-body sections of neonatal rats. , 1985, The Journal of pharmacology and experimental therapeutics.

[12]  D. Nutt,et al.  Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. , 2006, Trends in pharmacological sciences.

[13]  S. Meikle,et al.  Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET radioligand. , 2005, Bioorganic & medicinal chemistry.

[14]  S. Jan,et al.  In vivo imaging of brain lesions with [11C]CLINME, a new PET radioligand of peripheral benzodiazepine receptors , 2007, Glia.

[15]  T. Guilarte,et al.  Cellular and Subcellular Localization of Peripheral Benzodiazepine Receptors After Trimethyltin Neurotoxicity , 2000, Journal of neurochemistry.

[16]  Sami S Zoghbi,et al.  Synthesis and evaluation in monkey of two sensitive 11C-labeled aryloxyanilide ligands for imaging brain peripheral benzodiazepine receptors in vivo. , 2008, Journal of medicinal chemistry.

[17]  Ryuji Nakao,et al.  Quantitative Analysis for Estimating Binding Potential of the Peripheral Benzodiazepine Receptor with [11C]DAA1106 , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  Denis Guilloteau,et al.  DPA-714, a New Translocator Protein–Specific Ligand: Synthesis, Radiofluorination, and Pharmacologic Characterization , 2008, Journal of Nuclear Medicine.

[19]  O. Inoue,et al.  Synthesis and evaluation of11C-PK 11195 forin vivo study of peripheral-type benzodiazepine receptors using position emission tomography , 1989 .

[20]  J Versijpt,et al.  PET visualization of microglia in multiple sclerosis patients using [11C]PK11195 , 2003, European journal of neurology.

[21]  Tetsuya Suhara,et al.  [(11)C]DAA1106: radiosynthesis and in vivo binding to peripheral benzodiazepine receptors in mouse brain. , 2003, Nuclear medicine and biology.

[22]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[23]  D. Duverger,et al.  Imaging of primary and remote ischaemic and excitotoxic brain lesions. An autoradiographic study of peripheral type benzodiazepine binding sites in the rat and cat , 1988, Brain Research.

[24]  Ryuji Nakao,et al.  Quantitative analyses of 18F-FEDAA1106 binding to peripheral benzodiazepine receptors in living human brain. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[25]  Sylvain Houle,et al.  Radiosynthesis and initial evaluation of [18F]-FEPPA for PET imaging of peripheral benzodiazepine receptors. , 2008, Nuclear medicine and biology.

[26]  B. Agranoff,et al.  Barbiturate-enhanced detection of brain lesions by carbon-14-labeled 2-deoxyglucose autoradiography. , 1983, Science.

[27]  C. Carter,et al.  Peripheral type benzodiazepine binding sites are a sensitive indirect index of neuronal damage , 1987, Brain Research.

[28]  T. Guilarte,et al.  Peripheral benzodiazepine receptor imaging in CNS demyelination: functional implications of anatomical and cellular localization. , 2004, Brain : a journal of neurology.

[29]  Hervé Boutin,et al.  Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[30]  C. Wiley,et al.  The Positron Emission Tomography Ligand DAA1106 Binds With High Affinity to Activated Microglia in Human Neurological Disorders , 2008, Journal of neuropathology and experimental neurology.

[31]  M. Petit-Taboué,et al.  Brain kinetics and specific binding of [11C]PK 11195 to omega 3 sites in baboons: positron emission tomography study. , 1991, European journal of pharmacology.

[32]  S. Kurumiya,et al.  Antianxiety and antidepressant‐like effects of AC‐5216, a novel mitochondrial benzodiazepine receptor ligand , 2004, British journal of pharmacology.

[33]  V. Perry,et al.  Differential Blood–Brain Barrier Breakdown and Leucocyte Recruitment Following Excitotoxic Lesions in Juvenile and Adult Rats , 1998, Experimental Neurology.

[34]  Tetsuya Suhara,et al.  11C-AC-5216: A Novel PET Ligand for Peripheral Benzodiazepine Receptors in the Primate Brain , 2007, Journal of Nuclear Medicine.

[35]  S. Hume,et al.  Synthesis of the enantiomers of [N-methyl-11C]PK 11195 and comparison of their behaviours as radioligands for PK binding sites in rats. , 1994, Nuclear medicine and biology.

[36]  F. Fazio,et al.  Labeling and evaluation of N-[11C]methylated quinoline-2-carboxamides as potential radioligands for visualization of peripheral benzodiazepine receptors. , 2001, Journal of medicinal chemistry.

[37]  O. Inoue,et al.  Synthesis and evaluation of 11C-PK 11195 for in vivo study of peripheral-type benzodiazepine receptors using positron emission tomography. , 1989, Annals of nuclear medicine.

[38]  M. Grégoire,et al.  Synthesis and biological evaluation of substituted [18F]imidazo[1,2-a]pyridines and [18F]pyrazolo[1,5-a]pyrimidines for the study of the peripheral benzodiazepine receptor using positron emission tomography. , 2008, Journal of medicinal chemistry.

[39]  Radiosynthesis of 2‐[6‐chloro‐2‐(4‐iodophenyl)imidazo[1,2‐a]pyridin‐3‐yl]‐N‐ethyl‐N‐[11C]methyl‐acetamide, [11C]CLINME, a novel radioligand for imaging the peripheral benzodiazepine receptors with PET , 2007 .

[40]  Robert B. Innis,et al.  PET imaging with [11C]PBR28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat , 2007, Neuroscience Letters.

[41]  Yen F. Tai,et al.  Imaging microglial activation in Huntington's disease , 2007, Brain Research Bulletin.

[42]  Jordi Llop,et al.  Imaging Brain Inflammation with [11C]PK11195 by PET and Induction of the Peripheral-Type Benzodiazepine Receptor after Transient Focal Ischemia in Rats , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[43]  Tetsuya Suhara,et al.  Development of a new radioligand, N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoroethyl-5-methoxybenzyl)acetamide, for pet imaging of peripheral benzodiazepine receptor in primate brain. , 2004, Journal of medicinal chemistry.

[44]  B. Wipf,et al.  Computer controlled large scale production of , 1994 .