FLAME: A library of atomistic modeling environments

FLAME is a software package to perform a wide range of atomistic simulations for exploring the potential energy surfaces (PES) of complex condensed matter systems. The range of methods include molecular dynamics simulations to sample free energy landscapes, saddle point searches to identify transition states, and gradient relaxations to find dynamically stable geometries. In addition to such common tasks, FLAME implements a structure prediction algorithm based on the minima hopping method (MHM) to identify the ground state structure of any system given solely the chemical composition, and a framework to train a neural network potential to reproduce the PES from $\textit{ab initio}$ calculations. The combination of neural network potentials with the MHM in FLAME allows a highly efficient and reliable identification of the ground state as well as metastable structures of molecules and crystals, as well as of nano structures, including surfaces, interfaces, and two-dimensional materials. In this manuscript, we provide detailed descriptions of the methods implemented in the FLAME code and its capabilities, together with several illustrative examples.

[1]  Stefan Goedecker,et al.  Crystal structure prediction using the minima hopping method. , 2010, The Journal of chemical physics.

[2]  Stefan Goedecker,et al.  Adsorption of small NaCl clusters on surfaces of silicon nanostructures , 2009, Nanotechnology.

[3]  Alireza Khorshidi,et al.  Amp: A modular approach to machine learning in atomistic simulations , 2016, Comput. Phys. Commun..

[4]  Christian Trott,et al.  Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials , 2014, J. Comput. Phys..

[5]  S. Goedecker,et al.  Novel crystal structures for lithium–silicon alloy predicted by minima hopping method , 2016 .

[6]  S. Ghasemi,et al.  Optimized symmetry functions for machine-learning interatomic potentials of multicomponent systems. , 2018, The Journal of chemical physics.

[7]  F. Stillinger Exponential multiplicity of inherent structures , 1999 .

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Nikolaus Hansen,et al.  USPEX - Evolutionary crystal structure prediction , 2006, Comput. Phys. Commun..

[10]  Roi Baer,et al.  A spline for your saddle. , 2008, The Journal of chemical physics.

[11]  Tiago F. T. Cerqueira,et al.  High-pressure phases of VO 2 from the combination of Raman scattering and ab initio structural search , 2018 .

[12]  Tiago F. T. Cerqueira,et al.  Novel phases of lithium-aluminum binaries from first-principles structural search. , 2015, The Journal of chemical physics.

[13]  C. Wolverton,et al.  Cubine, a Quasi Two-Dimensional Copper–Bismuth Nanosheet , 2017 .

[14]  J. Behler Atom-centered symmetry functions for constructing high-dimensional neural network potentials. , 2011, The Journal of chemical physics.

[15]  S. Goedecker,et al.  High accuracy and transferability of a neural network potential through charge equilibration for calcium fluoride , 2017 .

[16]  K. Müller,et al.  Fast and accurate modeling of molecular atomization energies with machine learning. , 2011, Physical review letters.

[17]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[18]  Quan Li,et al.  Materials discovery via CALYPSO methodology , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Stefan Goedecker,et al.  The effect of ionization on the global minima of small and medium sized silicon and magnesium clusters. , 2010, The Journal of chemical physics.

[20]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[21]  M. Amsler Thermodynamics and superconductivity of SxSe1−xH3 , 2018, Physical Review B.

[22]  Pekka Koskinen,et al.  Structural relaxation made simple. , 2006, Physical review letters.

[23]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[24]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[25]  Wei Chen,et al.  The Abinit project: Impact, environment and recent developments , 2020, Comput. Phys. Commun..

[26]  S. Goedecker,et al.  Surface reconstructions and premelting of the (100) CaF2 surface. , 2019, Physical chemistry chemical physics : PCCP.

[27]  Li Zhu,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[28]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  Ali Sadeghi,et al.  A fingerprint based metric for measuring similarities of crystalline structures. , 2015, The Journal of chemical physics.

[30]  Stefan Goedecker,et al.  Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network , 2015, 1501.07344.

[31]  Stefan Goedecker,et al.  Particle-particle, particle-scaling function algorithm for electrostatic problems in free boundary conditions. , 2007, The Journal of chemical physics.

[32]  Reinhold Schneider,et al.  Daubechies wavelets as a basis set for density functional pseudopotential calculations. , 2008, The Journal of chemical physics.

[33]  Mario Valle,et al.  How to quantify energy landscapes of solids. , 2009, The Journal of chemical physics.

[34]  G. J. Snyder,et al.  ZnSb Polymorphs with Improved Thermoelectric Properties , 2016 .

[35]  B. M. Fulk MATH , 1992 .

[36]  E. Kaxiras,et al.  INTERATOMIC POTENTIAL FOR SILICON DEFECTS AND DISORDERED PHASES , 1997, cond-mat/9712058.

[37]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[38]  Stefan Goedecker,et al.  An enhanced splined saddle method. , 2011, The Journal of chemical physics.

[39]  Stefan Goedecker,et al.  Bell-Evans-Polanyi principle for molecular dynamics trajectories and its implications for global optimization. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  S. Ghasemi,et al.  Energy landscape of ZnO clusters and low-density polymorphs , 2017 .

[41]  Léon Personnaz,et al.  A recursive algorithm based on the extended Kalman filter for the training of feedforward neural models , 1998, Neurocomputing.

[42]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[43]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[44]  B. M. Powell,et al.  The crystal structure of formaldehyde , 1989 .

[45]  Stefan Goedecker,et al.  Low-energy structures of zinc borohydride $\mbox{Zn}(\mbox{BH}_{4})_{2}$ , 2012, 1210.1489.

[46]  David C. Lonie,et al.  XtalOpt: An open-source evolutionary algorithm for crystal structure prediction , 2011, Comput. Phys. Commun..

[47]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[48]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[49]  G. Henkelman,et al.  A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives , 1999 .

[50]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  Stefan Goedecker,et al.  Efficient solution of Poisson's equation with free boundary conditions. , 2006, The Journal of chemical physics.

[53]  I. Tanaka,et al.  $\texttt{Spglib}$: a software library for crystal symmetry search , 2018, 1808.01590.

[54]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[55]  S. Goedecker,et al.  Two-Dimensional Hexagonal Sheet of TiO2 , 2017 .

[56]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[57]  Michele Ceriotti,et al.  i-PI: A Python interface for ab initio path integral molecular dynamics simulations , 2014, Comput. Phys. Commun..

[58]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[59]  S. Goedecker,et al.  Low-energy polymeric phases of alanates. , 2012, Physical review letters.

[60]  Stefan Goedecker,et al.  Efficient moves for global geometry optimization methods and their application to binary systems. , 2010, The Journal of chemical physics.

[61]  Susan B. Sinnott,et al.  Charge optimized many-body potential for the Si/SiO2 system , 2007 .

[62]  Nongnuch Artrith,et al.  High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide , 2011 .

[63]  R. Wentzcovitch,et al.  Invariant molecular-dynamics approach to structural phase transitions. , 1991, Physical review. B, Condensed matter.

[64]  Johann Gasteiger,et al.  Electronegativity equalization: application and parametrization , 1985 .

[65]  Artem R. Oganov,et al.  Modern methods of crystal structure prediction , 2011 .

[66]  S. Goedecker Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.

[67]  S. J. Hashemifar,et al.  A neural-network potential through charge equilibration for WS2: From clusters to sheets. , 2017, The Journal of chemical physics.

[68]  R. Kondor,et al.  On representing chemical environments , 2012, 1209.3140.

[69]  Stefan Goedecker,et al.  Crystal Structure of Cold Compressed Graphite , 2012 .

[70]  S. Ghasemi,et al.  A highly accurate and efficient algorithm for electrostatic interactions of charged particles confined by parallel metallic plates. , 2015, The Journal of chemical physics.

[71]  Stefan Goedecker,et al.  A particle-particle, particle-density algorithm for the calculation of electrostatic interactions of particles with slablike geometry. , 2007, The Journal of chemical physics.

[72]  Stefan Goedecker,et al.  Stabilized quasi-Newton optimization of noisy potential energy surfaces. , 2014, The Journal of chemical physics.

[73]  Stefan Goedecker,et al.  Efficient and accurate three-dimensional Poisson solver for surface problems. , 2007, The Journal of chemical physics.

[74]  A. Gross,et al.  Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks , 2004 .

[75]  Gábor Csányi,et al.  Gaussian approximation potentials: A brief tutorial introduction , 2015, 1502.01366.

[76]  S. Goedecker,et al.  Metrics for measuring distances in configuration spaces. , 2013, The Journal of chemical physics.

[77]  T. Frauenheim,et al.  DFTB+, a sparse matrix-based implementation of the DFTB method. , 2007, The journal of physical chemistry. A.