Gold-acetonyl complexes: from side-products to valuable synthons.

A new synthetic strategy was devised leading to the formation of complexes, such as [Au(IPr)(CH2 COCH3)]. The approach capitalizes on the formation of a decomposition product observed in the course of the synthesis of [Au(IPr)(Cl)]. A library of gold acetonyl complexes containing the most common N-heterocyclic carbene (NHC) ligands has been synthesized. These acetonyl complexes are good synthons for the preparation of numerous organogold complexes. Moreover, they have proven to be precatalysts in common gold(I)-catalyzed reactions.

[1]  S. Nolan,et al.  A novel route for large-scale synthesis of [Au(NHC)(OH)] complexes , 2014 .

[2]  Emily E. Langdon-Jones,et al.  Recent developments in gold(I) coordination chemistry: luminescence properties and bioimaging opportunities. , 2014, Chemical communications.

[3]  Mickaël Henrion,et al.  From acetone metalation to the catalytic α-arylation of acyclic ketones with NHC-nickel(II) complexes. , 2014, Chemical communications.

[4]  G. Hutchings,et al.  Gold Catalysis: A Reflection on Where We are Now , 2014, Catalysis Letters.

[5]  A. Slawin,et al.  Synthesis, characterisation, and oxygen atom transfer reactions involving the first gold(I)-alkylperoxo complexes. , 2013, Chemical communications.

[6]  S. Nolan,et al.  Gold(I)-catalyzed protodecarboxylation of (hetero)aromatic carboxylic acids. , 2013, Chemistry.

[7]  D. J. Nelson,et al.  Quantifying and understanding the electronic properties of N-heterocyclic carbenes. , 2013, Chemical Society reviews.

[8]  D. J. Nelson,et al.  Iridium(I) hydroxides: powerful synthons for bond activation. , 2013, Chemistry.

[9]  A. Slawin,et al.  Straightforward synthesis of [Au(NHC)X] (NHC = N-heterocyclic carbene, X = Cl, Br, I) complexes. , 2013, Chemical communications.

[10]  F. Rominger,et al.  Gold Phenolate Complexes: Synthesis, Structure, and Reactivity , 2013 .

[11]  A. Laguna,et al.  N-Heterocyclic carbene ligands as modulators of luminescence in three-coordinate gold(I) complexes with spectacular quantum yields. , 2013, Journal of the American Chemical Society.

[12]  A. Slawin,et al.  Synthesis of N-Heterocyclic Carbene Gold Complexes Using Solution-Phase and Solid-State Protocols , 2013 .

[13]  Bingwu Wang,et al.  π-π interaction assisted hydrodefluorination of perfluoroarenes by gold hydride: a case of synergistic effect on C-F bond activation. , 2012, Journal of the American Chemical Society.

[14]  S. Nolan,et al.  N-heterocyclic carbene gold(I) and copper(I) complexes in C-H bond activation. , 2012, Accounts of chemical research.

[15]  A. Casini,et al.  Gold(I) carbene complexes causing thioredoxin 1 and thioredoxin 2 oxidation as potential anticancer agents. , 2012, Journal of medicinal chemistry.

[16]  G. Natile,et al.  Activation of Ketones by Electrophilic Metal Complexes. Synthesis of Some Ketonyl Platinum(II) Complexes and X-Ray Crystal Structure of [PtCl{CH2C(O)CH3}(1,10-phenanthroline)]·1/2Y (Y = H2O or CH2Cl2) , 2012 .

[17]  A. Lledós,et al.  Gold versus Silver‐Catalyzed Intermolecular Hydroaminations of Alkenes and Dienes , 2011 .

[18]  A. Slawin,et al.  Influence of a Very Bulky N-Heterocyclic Carbene in Gold-Mediated Catalysis , 2011 .

[19]  Eric Gayon,et al.  Gold-catalyzed propargylic substitutions: Scope and synthetic developments , 2011, Beilstein journal of organic chemistry.

[20]  S. Blum,et al.  Organogold reactivity with palladium, nickel, and rhodium: transmetalation, cross-coupling, and dual catalysis. , 2011, Accounts of chemical research.

[21]  A. Slawin,et al.  Decarboxylation of aromatic carboxylic acids by gold(I)-N-heterocyclic carbene (NHC) complexes. , 2011, Chemical communications.

[22]  S. Nolan The development and catalytic uses of N-heterocyclic carbene gold complexes. , 2011, Accounts of chemical research.

[23]  Luigi Cavallo,et al.  A combined mechanistic and computational study of the gold(I)-catalyzed formation of substituted indenes. , 2011, Organic & biomolecular chemistry.

[24]  S. Nolan,et al.  Efficient silver-free gold(I)-catalyzed hydration of alkynes at low catalyst loading , 2011 .

[25]  C. Nájera,et al.  Gold versus silver-catalyzed amination of allylic alcohols , 2011 .

[26]  A. Slawin,et al.  Ligand influence in the selective gold-mediated synthesis of allenes. , 2010, Chemical communications.

[27]  A. Slawin,et al.  Development of versatile and silver-free protocols for gold(I) catalysis. , 2010, Chemistry.

[28]  J. W. Levell,et al.  A versatile gold synthon for acetylene C-H bond activation. , 2010, Dalton transactions.

[29]  A. Stephen,et al.  A Critical Comparison: Copper, Silver, and Gold , 2010 .

[30]  F. Glorius,et al.  Das Maß aller Ringe – N‐heterocyclische Carbene , 2010 .

[31]  F. Glorius,et al.  The measure of all rings--N-heterocyclic carbenes. , 2010, Angewandte Chemie.

[32]  A. Slawin,et al.  A N-heterocyclic carbene gold hydroxide complex: a golden synthon. , 2010, Chemical communications.

[33]  M. Manassero,et al.  Intramolecular C(sp2)−H Bond Activation in 6,6′-Dimethoxy-2,2′-Bipyridine with Gold(III). Crystal and Molecular Structure of the First N′,C(3) “Rollover” Cycloaurated Derivative , 2010 .

[34]  S. Nolan,et al.  N-heterocyclic carbenes in late transition metal catalysis. , 2009, Chemical reviews.

[35]  A. Corma,et al.  Isolable gold(I) complexes having one low-coordinating ligand as catalysts for the selective hydration of substituted alkynes at room temperature without acidic promoters. , 2009, The Journal of organic chemistry.

[36]  S. Nolan,et al.  [(NHC)Au(I)]-catalyzed acid-free alkyne hydration at part-per-million catalyst loadings. , 2009, Journal of the American Chemical Society.

[37]  Emily Y. Tsui,et al.  Reactions of a stable monomeric gold(I) hydride complex. , 2008, Angewandte Chemie.

[38]  H. Raubenheimer,et al.  Carbene complexes of gold: preparation, medical application and bonding. , 2008, Chemical Society reviews.

[39]  A. Hashmi,et al.  Gold catalysis in total synthesis. , 2008, Chemical Society reviews.

[40]  S. Nolan,et al.  N-heterocyclic carbenes in gold catalysis. , 2008, Chemical Society reviews.

[41]  F Dean Toste,et al.  Ligand effects in homogeneous Au catalysis. , 2008, Chemical reviews.

[42]  Zigang Li,et al.  Gold-catalyzed organic transformations. , 2008, Chemical reviews.

[43]  J. Fernández-Hernández,et al.  Acetonyl Platinum(II) Complexes , 2007 .

[44]  F. Gagosz,et al.  Synthesis and Reactivity of Air-Stable N-Heterocyclic Carbene Gold(I) Bis(trifluoromethanesulfonyl)imidate Complexes , 2007 .

[45]  A. S. K. Hashmi,et al.  Goldkatalysierte benzylische C‐H‐Aktivierung bei Raumtemperatur , 2007 .

[46]  A. Hashmi,et al.  Gold-catalyzed benzylic C-H activation at room temperature. , 2007, Angewandte Chemie.

[47]  S. Nolan,et al.  [(NHC)AuI]-catalyzed formation of conjugated enones and enals: an experimental and computational study. , 2007, Chemistry.

[48]  A Stephen K Hashmi,et al.  Gold-catalyzed organic reactions. , 2007, Chemical reviews.

[49]  S. Nolan,et al.  Synthesis, characterization and reactivity of N-heterocyclic carbene gold(III) complexes , 2007 .

[50]  A. Echavarren,et al.  Molecular diversity through gold catalysis with alkynes. , 2007, Chemical communications.

[51]  Jan M. L. Martin,et al.  Selective sp3 C-H activation of ketones at the beta position by Ir(I). Origin of regioselectivity and water effect. , 2006, Journal of the American Chemical Society.

[52]  J. Fernández-Hernández,et al.  The first family of platinum(IV) acetonyl complexes. Mono-, Bis-, and tris(acetonyl) derivatives , 2006 .

[53]  S. Nolan,et al.  Au(I)-catalyzed tandem [3,3] rearrangement-intramolecular hydroarylation: mild and efficient formation of substituted indenes. , 2006, Angewandte Chemie.

[54]  A. Chan,et al.  Nickel-catalyzed asymmetric α-arylation of ketone enolates , 2006 .

[55]  L. Falvello,et al.  Synthesis, Structural Characterisation and Reactions of Some Vinylgold(I) Phosphane Complexes , 2006 .

[56]  James L. Hickey,et al.  Synthesis and structural characterisation of linear Au(I) N-heterocyclic carbene complexes: New analogues of the Au(I) phosphine drug Auranofin , 2005 .

[57]  R. Crabtree NHC ligands versus cyclopentadienyls and phosphines as spectator ligands in organometallic catalysis , 2005 .

[58]  P. Müller,et al.  A Carbene-Stabilized Gold(I) Fluoride: Synthesis and Theory , 2005 .

[59]  S. Nolan,et al.  Synthesis and Structural Characterization of N-Heterocyclic Carbene Gold(I) Complexes , 2005 .

[60]  J. Fernández-Hernández,et al.  An unprecedented process involving normal and redox transmetallation reactions between Hg and Pt affording the unexpected K[Pt2[CH2C(O)Me]6(mu-Cl)3] complex: the key role of X-ray powder diffraction in unravelling its nature and structure. , 2005, Chemical communications.

[61]  K. Goubitz,et al.  Crystal structure of the novel neutral octahedral complex [(4'-(4-t-butylphenyl)-2,2':6',2''-terpyridine)RhIII(Br)(acetonyl)2] , 2005 .

[62]  J. Vittal,et al.  Study on carbon–hydrogen activation of ketones by Gold(III) complexes and the synthesis and characterization of two ketonylgold(III) complexes , 2004 .

[63]  J. Hartwig,et al.  Palladium-Catalyzed α-Arylation of Carbonyl Compounds and Nitriles , 2003 .

[64]  S. Schneider,et al.  Synthesis of the First Gold(I) Carbene Complex with a Gold‐Oxygen Bond — First Catalytic Application of Gold(I) Complexes Bearing N‐Heterocyclic Carbenes , 2003 .

[65]  Kazuhiko Sato,et al.  Highly efficient AuI-catalyzed hydration of alkynes. , 2002, Angewandte Chemie.

[66]  Kazuko Matsumoto,et al.  Organometallic chemistry of platinum-blue derived platinumIII dinuclear complexes , 2002 .

[67]  A. Vogler Photoreactivity of gold complexes , 2001 .

[68]  J. Vicente,et al.  [Pd{CH2C(O)Me}Cl]n, a Key Product for the Synthesis of Acetonylpalladium(II) Complexes , 2001 .

[69]  Jinkun Huang,et al.  Olefin Metathesis-Active Ruthenium Complexes Bearing a Nucleophilic Carbene Ligand , 1999 .

[70]  Andres Lorca,et al.  Synthesis of New Ketonyl Palladium(II) and Platinum(II) Complexes with Nitrogen-Donor Ligands. Crystal Structure of [Pt{CH2C(O)Me}2(bpy)] , 1998 .

[71]  M. Manassero,et al.  Synthesis and characterization of gold(III) adducts and cyclometallated derivatives with 6-benzyl- and 6-alkyl-2,2′-bipyridines , 1996 .

[72]  M. Bermúdez,et al.  Reactivity of ketonylgold(III) complexes. Crystal and molecular structure of SP-4-4-[Au(2-C6H4N2Ph){CH2COC6H2(OMe)3-3,4,5} Cl(PPh3)] and SP-4-4-[Au(2-C6H4N2Ph)(CH2COMe)Cl(PPh3)] , 1993 .

[73]  M. Bermúdez,et al.  Synthesis of intermediates in the C–H activation of acetone with 2-phenylazophenylgold(III) complexes and in the C–C coupling of aryl groups from diarylgold(III) complexes. Crystal and molecular structures of [Au{C6H3(NNC6H4Me-4′)-2-Me-5}(acac-C)Cl](acac = acetylacetonate), cis-[Au(C6H4NNPh-2)Cl2(PP , 1990 .

[74]  R. Bergman,et al.  Synthesis and reactions of nickel and palladium carbon-bound enolate complexes , 1990 .

[75]  R. Bergman,et al.  Synthesis of .eta.1 oxygen-bound rhodium enolates. Applications to catalytic aldol chemistry , 1989 .

[76]  M. Bermúdez,et al.  C–H activation of acetone by 2-phenylazophenylgold(III) complexes; synthesis of the first acetonylgold(III) complex , 1989 .

[77]  D. Seebach Struktur und Reaktivität von Lithiumenolaten, vom Pinakolon zur selektiven C‐Alkylierung von Peptiden – Schwierigkeiten und Möglichkeiten durch komplexe Strukturen , 1988 .

[78]  D. Seebach Structure and Reactivity of Lithium Enolates. From Pinacolone to Selective C‐Alkylations of Peptides. Difficulties and Opportunities Afforded by Complex Structures , 1988 .

[79]  M. Murakami,et al.  Reactions of (triphenylphosphine)gold(I) enolates and homoenolates , 1988 .

[80]  M. Murakami,et al.  Convenient preparative method and crystal structures of (tripenylphosphine)gold(I) enolate and homoenolate complexes , 1988 .

[81]  Y. Ito,et al.  トリフェニルホスフィン)金(I)エノラートとホモエノラート錯体の便利な合成法と結晶構造 , 1988 .

[82]  R. Bergman,et al.  Tungsten and molybdenum 2-oxaallyl [.eta.1-(C)-enolate] complexes: functional group transformations, photochemical aldol reactions, and alkyne/carbon monoxide migratory insertion reactions , 1987 .

[83]  R. Bergman,et al.  Synthesis, structure, and carbon-carbon bond-forming reactions of carbon-bound molybdenum, tungsten, and rhenium enolates. Detection of an .eta.3-oxaallyl intermediate , 1985 .

[84]  T. Hirao,et al.  Nickel enolates in the Ni(CO)4 -induced carbonylation of gem-dibromocyclopropanes with silylamine or silylsulfide , 1985 .

[85]  G. B. Shul’pin,et al.  Photoinduced reactions of organic compounds with transition metal complexes: II. Reaction of PtCl62− with acetone to give a σ-acetonyl complex of platinum(IV). Detection of platinum(III) compounds by ESR , 1984 .

[86]  D. Milstein The cis-alkyl and cis-acylrhodium and iridium hydrides. Model intermediates in homogeneous catalysis , 1984 .

[87]  G. B. Shul’pin,et al.  Photoinduced reactions of PtCl62– with saturated hydrocarbons and other C–H containing compounds , 1983 .

[88]  D. Arnold,et al.  Methyl- and phenyl-bis(tertiary phosphine) hydroxo complexes of platinum(II): Reactions with weak acids and hydration of nitriles catalysed by hydroxo and N-bonded carboxamido complexes of platinum(II) , 1980 .

[89]  G. Posner,et al.  A directing effect of neighboring aromatic groups on the regiochemistry of formation and stereochemistry of alkylation and bromination of ketone lithium enolates. Evidence for lithium-arene coordination and dramatic effect of copper(I) in controlling stereochemistry and limiting polyalkylation , 1979 .

[90]  M. Cairns,et al.  A new synthesis of platinum—carbon bonds , 1977 .

[91]  J. Bartmess,et al.  Equilibrium acidities of carbon acids. VI. Establishment of an absolute scale of acidities in dimethyl sulfoxide solution , 1975 .