The equilibrium state method for hyperbolic conservation laws with stiff reaction terms

[1]  Chi-Wang Shu,et al.  Spurious behavior of shock-capturing methods by the fractional step approach: Problems containing stiff source terms and discontinuities , 2013, J. Comput. Phys..

[2]  Wei Wang,et al.  On spurious numerics in solving reactive equations , 2013 .

[3]  Jian-Guo Li,et al.  Propagation of ocean surface waves on a spherical multiple-cell grid , 2012, J. Comput. Phys..

[4]  Chi-Wang Shu,et al.  High order finite difference methods with subcell resolution for advection equations with stiff source terms , 2012, J. Comput. Phys..

[5]  Michael Dumbser,et al.  ADER Schemes for Nonlinear Systems of Stiff Advection–Diffusion–Reaction Equations , 2011, J. Sci. Comput..

[6]  Jian-Guo Li,et al.  Upstream Nonoscillatory Advection Schemes , 2008 .

[7]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[8]  Luigi Vigevano,et al.  Numerical solution of under-resolved detonations , 2008, J. Comput. Phys..

[9]  Jiang Zonglin Numerical investigation of detonation sweeping an interface of inert gas and its decoupling , 2006 .

[10]  Weizhu Bao,et al.  The Random Projection Method for Stiff Multispecies Detonation Capturing , 2002 .

[11]  D. Nguyen A Fully Conservative Ghost Fluid Method & Stiff Detonation Waves , 2002 .

[12]  Shi Jin,et al.  The Random Projection Method for Stiff Detonation Capturing , 2001, SIAM J. Sci. Comput..

[13]  Weizhu Bao,et al.  The Random Projection Method for Hyperbolic Conservation Laws with Stiff Reaction Terms , 2000 .

[14]  Randall J. LeVeque,et al.  A Modified Fractional Step Method for the Accurate Approximation of Detonation Waves , 2000, SIAM J. Sci. Comput..

[15]  Barna L. Bihari,et al.  Multiresolution Schemes for the Reactive Euler Equations , 1999 .

[16]  Rolf Jeltsch,et al.  Error estimators for the position of discontinuities in hyperbolic conservation laws with source terms which are solved using operator splitting , 1999 .

[17]  M. Liou A Sequel to AUSM , 1996 .

[18]  E. F. Kaasschieter,et al.  Detonation capturing for stiff combustion chemistry , 1998 .

[19]  M. Liou,et al.  A New Flux Splitting Scheme , 1993 .

[20]  Andrew J. Majda,et al.  Theoretical and numerical structure for unstable one-dimensional detonations , 1991 .

[21]  A. J. MAJDA,et al.  Numerical Study of the Mechanisms for Initiation of Reacting Shock Waves , 1990, SIAM J. Sci. Comput..

[22]  Randall J. LeVeque,et al.  A study of numerical methods for hyperbolic conservation laws with stiff source terms , 1990 .

[23]  P. Colella,et al.  Theoretical and numerical structure for reacting shock waves , 1986 .

[24]  Elaine S. Oran,et al.  Determination of detonation cell size and the role of transverse waves in two-dimensional detonations☆ , 1985 .

[25]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[26]  Alexandre J. Chorin,et al.  Random choice methods with applications to reacting gas flow , 1977 .

[27]  Alexandre J. Chorin,et al.  Random choice solution of hyperbolic systems , 1976 .

[28]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[29]  Jian-Guo Li,et al.  Upstream Non-Oscillatory Advection Schemes Suitable for Ocean Wave Models , 2022 .