Nd3+-doped TeO2–MoO3–ZnO tellurite glass for a diode-pump 1.06 μm laser

[1]  T. Hayakawa,et al.  Nd3+-doped transparent tellurite ceramics bulk lasers , 2018, Scientific Reports.

[2]  S. Ye,et al.  The impact of local structure variation on thermal quenching of luminescence in Ca3MoxW1−xO6:Eu3+ solid solution phosphors , 2017 .

[3]  E. Culea,et al.  Structural, spectroscopic and magnetic properties of Nd3+ doped lead tellurite glass ceramics containing silver , 2017 .

[4]  Zhenhua Hu,et al.  Controllable transmission photonic band gap and all-optical switching behaviors of 1-D InAs/GaAs quantum-dot photonic crystal , 2016 .

[5]  Wenliang Wang,et al.  20 μm Nd^3+/Ho^3+-doped tungsten tellurite fiber laser , 2016 .

[6]  G. Bilir Synthesis and Spectroscopy of Nd3+‐doped Tellurite‐based Glasses , 2015 .

[7]  Zhong-hong Jiang,et al.  The formation of glass: a quantitative perspective , 2015, Science China Materials.

[8]  Junjie Zhang,et al.  Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass , 2015 .

[9]  V. Venkatramu,et al.  Optical properties of Nd3+ doped bismuth zinc borate glasses. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[10]  A. Agarwal,et al.  Fluorescence and radiative properties of Nd3+ ions doped zinc bismuth silicate glasses , 2014 .

[11]  N. Vijaya,et al.  NIR fluorescence studies of Neodymium ions doped sodium fluoroborate glasses for 1.06μm laser applications. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[12]  P. Dutta,et al.  Eu3+ Activated Molybdate and Tungstate Based Red Phosphors with Charge Transfer Band in Blue Region , 2013 .

[13]  Animesh Jha,et al.  Rare-earth ion doped TeO2 and GeO2 glasses as laser materials , 2012 .

[14]  A Jha,et al.  Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications , 2012 .

[15]  Q. Zhang,et al.  Compositional effect of WO3, MoO3, and P2O5 on Raman spectroscopy of tellurite glass for broadband and high gain Raman amplifier , 2012 .

[16]  B. C. Jamalaiah,et al.  Structural and luminescence properties of Nd3+-doped PbO–B2O3–TiO2–AlF3 glass for 1.07μm laser applications , 2012 .

[17]  B. C. Jamalaiah,et al.  Investigation on luminescence properties of Nd3+ ions in alkaline-earth titanium phosphate glasses , 2011 .

[18]  H. Seo,et al.  Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+:CdO–Bi2O3–B2O3 glasses for laser applications , 2011, Journal of Materials Science.

[19]  W. J. Chung,et al.  1.4 μm emission properties and local environments of Tm3+ ions in tellurite glass modified with MoO3 , 2010 .

[20]  Li-Min Wang,et al.  Glass transition in binary eutectic systems: best glass-forming composition. , 2010, The journal of physical chemistry. B.

[21]  C. K. Jayasankar,et al.  Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinc tellurite glasses , 2010 .

[22]  Zhongmin Yang,et al.  Judd–Ofelt and laser parameterization of Tm3+-doped barium gallo-germanate glass fabricated with efficient dehydration methods , 2009 .

[23]  A. Sennaroğlu,et al.  Lasing at 1065 nm in bulk Nd3+-doped telluride-tungstate glass , 2008 .

[24]  Martin Richardson,et al.  Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica, and phosphate glasses: A comparative study , 2008 .

[25]  C. K. Jayasankar,et al.  Fluorescence properties of Nd3+-doped tellurite glasses. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[26]  徐善辉,et al.  Broadband amplified spontaneous emission from Er 3+ -doped single-mode tellurite fibre , 2006 .

[27]  Ziyun Jiang,et al.  Thermal stability and spectroscopic properties of Er3+-doped niobium tellurite glasses for broadband amplifiers , 2005 .

[28]  H. T. Lim,et al.  2.0 μm Emission Properties and Energy Transfer between Ho3+ and Tm3+ in PbO—Bi2O3—Ga2O3 Glasses , 2004 .

[29]  R. Murugan Investigation on ionic conductivity and Raman spectra of γ-Bi2MoO6 , 2004 .

[30]  Jianhui Yang,et al.  Optical spectroscopy and gain properties of Nd 3+ -doped oxide glasses , 2004 .

[31]  A. Speghini,et al.  Optical spectroscopy of lanthanide ions in Al2O3–Nb2O5–TeO2 glasses , 2004 .

[32]  Animesh Jha,et al.  Structural origin of spectral broadening of 1.5-μm emission in Er 3+ -doped tellurite glasses , 2000 .

[33]  M. Poulain,et al.  Infrared and Raman spectra of new molybdenum and tungsten oxyfluoride glasses , 1999 .

[34]  Hefang Hu,et al.  Tungsten–tellurite glass: a new candidate medium for Yb3+-doping , 1999 .

[35]  T. Komatsu,et al.  Thermal stability and heat capacity changes at the glass transition in K2O–WO3–TeO2 glasses , 1998 .

[36]  R. Conroy,et al.  Self-Q-switched Nd:YVO4 microchip lasers. , 1998, Optics Letters.

[37]  S. Ogawa,et al.  Structural study of MoO3TeO2 glasses , 1995 .

[38]  Tokuro Nanba,et al.  Coordination change of Te atoms in binary tellurite glasses , 1994 .

[39]  E. M. Vogel,et al.  Tellurite glass: a new candidate for fiber devices , 1994 .

[40]  G. Sigel,et al.  Spectroscopic Analysis of the Structure and Properties of Alkali Tellurite Glasses , 1992 .

[41]  T. Taira,et al.  Single-mode oscillation of laser-diode-pumped Nd:YVO(4) microchip lasers. , 1991, Optics letters.

[42]  T. Sekiya,et al.  Normal Vibrations of Two Polymorphic forms of TeO2 Crystals and Assignments of Raman Peaks of Pure TeO2 Glass , 1989 .

[43]  J. Zayhowski,et al.  Single-frequency microchip Nd lasers. , 1989, Optics letters.

[44]  Zhong-hong Jiang,et al.  Prediction of eutectics and phase separation in the glass formation range using a thermodynamic method , 1982 .

[45]  J. C. Bart,et al.  Das Phasendiagramm des Systems TeO2–MoO3 , 1981 .