Numerical methods for solid-liquid phase-change problems

Abstract This chapter describes formulation of simulation models for ultrahigh temperature latent heat thermal energy storage (UHT-LHTES) systems. A brief overview of the involved mechanisms and challenges in modeling these systems will be presented. A detailed overview of both explicit and implicit methods used to track a moving phase change front is provided. Main emphasis is given on an implicit type of method, the enthalpy-porosity approach, which is considered the most appropriate for such simulations due to its accuracy and computational efficiency. This approach will be analyzed in examples of simulating phase-change materials at ultrahigh temperatures. Modeling options, such as numerical models, discretization schemes, and grid resolution, will be thoroughly reviewed with respect to an accurate simulation of UHT-LHTES systems.

[1]  D. Juric,et al.  A Front-Tracking Method for Dendritic Solidification , 1996 .

[2]  Luiz C. Wrobel,et al.  A Boundary Element Method for Multiple Moving Boundary Problems , 1997 .

[3]  Guillermo Marshall A front tracking method for one dimensional moving boundary problems , 1986 .

[4]  D. Brüggemann,et al.  Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments , 2011 .

[5]  Yvan Dutil,et al.  A review on phase-change materials: Mathematical modeling and simulations , 2011 .

[6]  Farah Souayfane,et al.  Melting of a phase change material in presence of natural convection and radiation: A simplified Model , 2018 .

[7]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[8]  Massimo Garai,et al.  Fixed Grid Numerical Models for Solidification and Melting of Phase Change Materials (PCMs) , 2019, Applied Sciences.

[9]  F. Vermolen,et al.  A comparison of numerical models for one-dimensional Stefan problems , 2006 .

[10]  T. Mahlia,et al.  Numerical study for enhancement of solidification of phase change materials using trapezoidal cavity , 2014 .

[11]  Mehdi Raessi,et al.  Three-Dimensional Modelling of Density Variation Due to Phase Change in Complex Free Surface Flows , 2005 .

[12]  Yildiz Bayazitoglu,et al.  Melting Within a Spherical Enclosure , 1982 .

[13]  F. L. Tan,et al.  Unconstrained melting inside a sphere. , 2013 .

[15]  D. R. Poirier,et al.  Permeabilities for flow of interdendritic liquid in equiaxial structures , 1992 .

[16]  Katherine J. Evans,et al.  Development of a 2-D algorithm to simulate convection and phase transition efficiently , 2006, J. Comput. Phys..

[17]  J. Caltagirone,et al.  Penalty and Eulerian–Lagrangian VOF methods for impact and solidification of metal droplets plasma spray process , 2015 .

[18]  E. Stefanakos,et al.  Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems , 2015 .

[19]  K. Cen,et al.  An experimental and numerical investigation of constrained melting heat transfer of a phase change material in a circumferentially finned spherical capsule for thermal energy storage , 2016 .

[20]  Huiying Wu,et al.  Validation of a melting fraction-based effective thermal conductivity correlation for prediction of melting phase change inside a sphere , 2019, International Journal of Thermal Sciences.

[21]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[22]  B. Šarler,et al.  SOLVING THE STEFAN PROBLEM WITH THE RADIAL BASIS FUNCTION COLLOCATION MEHOD , 2003 .

[23]  Kenneth Morgan,et al.  A numerical analysis of freezing and melting with convection , 1981 .

[24]  Gregor Kosec,et al.  Solution of Phase Change Problems by Collocation with Local Pressure Correction , 2009 .

[25]  Vaughan R Voller,et al.  ON THE ENTHALPY METHOD , 1993 .

[26]  J. Hua,et al.  A front tracking method for simulation of two-phase interfacial flows on adaptive unstructured meshes for complex geometries , 2019, International Journal of Multiphase Flow.

[27]  L. Pan,et al.  Numerical modeling of three-phase flow with phase change using the level-set method , 2017 .

[28]  M. Salcudean,et al.  On numerical methods used in mathematical modeling of phase change in liquid metals , 1988 .

[29]  Gunter H. Meyer The numerical solution of Stefan problems with front-tracking and smoothing methods , 1978 .

[30]  Roland W. Lewis,et al.  Finite element solution of non‐linear heat conduction problems with special reference to phase change , 1974 .

[31]  M. Farhadi,et al.  Melting and solidification of PCM enhanced by radial conductive fins and nanoparticles in cylindrical annulus , 2016 .

[32]  Numerical simulation of a silicon-based latent heat thermal energy storage system operating at ultra-high temperatures , 2019, Applied Energy.

[33]  Bruce T. Murray,et al.  Adaptive phase-field computations of dendritic crystal growth , 1997 .

[34]  W. Shyy,et al.  Computation of Solid-Liquid Phase Fronts in the Sharp Interface Limit on Fixed Grids , 1999 .

[35]  M. Dehghan,et al.  Numerical solution of a non-classical two-phase Stefan problem via radial basis function (RBF) collocation methods , 2016 .

[36]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[37]  Gennady Ziskind,et al.  Numerical and experimental study of melting in a spherical shell , 2007 .

[38]  A Conservative Finite Element Method for One-Dimensional Stefan problems with Appearing and Disappearing Phases , 1981 .

[39]  Ali F. Elmozughi Heat Transfer Analysis of Encapsulated Phase Change Materials for Thermal Energy Storage , 2013 .

[40]  N. Goldenfeld,et al.  Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures , 1998, cond-mat/9808216.

[41]  D. Brüggemann,et al.  Numerical Modelling of Wetting Phenomena During Melting of PCM , 2016 .

[42]  C. Cañizo,et al.  Molten silicon storage of concentrated solar power with integrated thermophotovoltaic energy conversion , 2018 .

[43]  Haitian Yang,et al.  Solving heat transfer problems with phase change via smoothed effective heat capacity and element-free Galerkin methods , 2010 .

[44]  J. Mackenzie,et al.  A moving mesh method for the solution of the one-dimensional phase-field equations , 2002 .

[45]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[46]  H. Beer,et al.  An analytical solution of the heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube , 1984 .

[47]  C. Croitoru,et al.  Effect of phase change material wall on natural convection heat transfer inside an air filled enclosure , 2017 .

[48]  Muhammad M. Rahman,et al.  Comparison between the single-PCM and multi-PCM thermal energy storage design , 2014 .

[49]  M. Lacroix Numerical simulation of a shell-and-tube latent heat thermal energy storage unit , 1993 .

[50]  V. Voller,et al.  A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems , 1987 .

[51]  M. Cross,et al.  An enthalpy method for convection/diffusion phase change , 1987 .

[52]  Wheeler,et al.  Phase-field model for isothermal phase transitions in binary alloys. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[53]  O. Badr,et al.  Performance of a finned, latent-heat storage system for high temperature applications , 2017 .

[54]  Mo Yang,et al.  NUMERICAL STUDY OF NATURAL CONVECTION HEAT TRANSFER IN A CYLINDRICAL ENVELOPE WITH INTERNAL CONCENTRIC SLOTTED HOLLOW CYLINDER , 1992 .

[55]  Suresh V. Garimella,et al.  Experimental and numerical study of melting in a cylinder , 2006 .

[56]  Dieter Brüggemann,et al.  A comprehensive benchmark of fixed-grid methods for the modeling of melting , 2017 .

[57]  C. Brebbia,et al.  A new approach to free vibration analysis using boundary elements , 1983 .

[58]  S. Iniyan,et al.  Phase change characteristic study of spherical PCMs in solar energy storage , 2009 .

[59]  Sarah L. Mitchell Applying the combined integral method to two-phase Stefan problems with delayed onset of phase change , 2015, J. Comput. Appl. Math..

[60]  F. L. Tan,et al.  Constrained and unconstrained melting inside a sphere , 2008 .

[61]  Mousa Farhadi,et al.  Numerical study of melting inside concentric and eccentric horizontal annulus , 2012 .

[62]  S. Mukherjee,et al.  Boundary element techniques: Theory and applications in engineering , 1984 .

[63]  S. Osher,et al.  A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.

[64]  Yogendra Joshi,et al.  Melting in a side heated tall enclosure by a uniformly dissipating heat source , 2001 .

[65]  A. Mujumdar,et al.  Finite-element analysis of cyclic heat transfer in a shell-and-tube latent heat energy storage exchanger , 1997 .

[66]  Antonio Luque,et al.  Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion , 2016 .

[67]  M. Hussein,et al.  Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage , 2014 .

[68]  Sunil Kumar Singal,et al.  Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material , 2008 .

[69]  Thomas Y. Hou,et al.  Boundary integral methods for multicomponent fluids and multiphase materials , 2001 .

[70]  D. Hänel,et al.  A front tracking method on unstructured grids , 2003 .

[71]  Y. Shibuta,et al.  Solidification in a Supercomputer: From Crystal Nuclei to Dendrite Assemblages , 2015 .

[72]  S. Ostrach,et al.  The solution of a two-dimensional freezing problem including convection effects in the liquid region , 1974 .

[73]  Frédéric Gibou,et al.  Efficient symmetric discretization for the Poisson, heat and Stefan-type problems with Robin boundary conditions , 2010, J. Comput. Phys..

[74]  R. Sankaran,et al.  A sharp interface model for deterministic simulation of dendrite growth , 2019, Computational Materials Science.

[75]  Xiaodong Wang,et al.  Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation , 2014 .

[76]  B. Santillana,et al.  Transient Effect of Fluid Flow on Dendrite Growth Direction in Binary Fe-C Alloys Using Phase Field in OpenFOAM , 2019, JOM.

[77]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[78]  D. I. Meiron,et al.  Numerical simulations of unsteady crystal growth , 1992 .

[79]  Juan C. Heinrich,et al.  Front-tracking finite element method for dendritic solidification: 765 , 2001 .

[80]  Arun S. Mujumdar,et al.  A parametric study of phase change material (PCM)-based heat sinks , 2008 .

[81]  Truong V. Vu,et al.  Numerical investigations of solidification around a circular cylinder under forced convection , 2016 .

[82]  Anthony T. Patera,et al.  A Legendre spectral element method for the Stefan problem , 1987 .

[83]  Zhanhua Ma,et al.  Solid velocity correction schemes for a temperature transforming model for convection phase change , 2006 .

[84]  L. Wrobel,et al.  A front-tracking BEM formulation for one-phase solidification/melting problems , 1995 .

[85]  Xiaofeng Yang,et al.  An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids , 2006, J. Comput. Phys..

[86]  F. Bai,et al.  Microstructural evolution within mushy zone during paraffin’s melting and solidification , 2019, International Journal of Heat and Mass Transfer.

[87]  Truong V. Vu,et al.  Numerical investigations of drop solidification on a cold plate in the presence of volume change , 2015 .

[88]  Frederick Stern,et al.  A new volume-of-fluid method with a constructed distance function on general structured grids , 2012, J. Comput. Phys..

[89]  F. Kuznik,et al.  Melting with convection and radiation in a participating phase change material , 2013 .

[90]  Adam Yehudi Ghoneim A smoothed particle hydrodynamics-phase field method with radial basis functions and moving least squares for meshfree simulation of dendritic solidification , 2020 .

[91]  Carlos Alberto Brebbia,et al.  The dual reciprocity boundary element formulation for diffusion problems , 1987 .

[92]  Francis Agyenim,et al.  A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) , 2010 .

[93]  Ronald Fedkiw,et al.  A Level Set Approach for the Numerical Simulation of Dendritic Growth , 2003, J. Sci. Comput..

[94]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[95]  Marcel Lacroix,et al.  An enhanced thermal conduction model for the prediction of convection dominated solid–liquid phase change , 2009 .

[96]  M. Hawlader,et al.  Microencapsulated PCM thermal-energy storage system , 2003 .

[97]  Manolis Gavaises,et al.  Coupling a local adaptive grid refinement technique with an interface sharpening scheme for the simulation of two-phase flow and free-surface flows using VOF methodology , 2015, J. Comput. Phys..

[98]  Gennady Ziskind,et al.  Numerical and Experimental Study of Solidification in a Spherical Shell , 2009 .

[99]  A. Kassab,et al.  A source and sink method for numerical and exact solutions of Stefan problems , 1995 .

[100]  D. Scharfe,et al.  Computational Evaluation of a Latent Heat Energy Storage System , 2013 .

[101]  Panayiotis A. Kyriacou,et al.  Experimental and numerical investigations of the optical and thermal aspects of a PCM-glazed unit , 2013 .

[102]  Ephraim M Sparrow,et al.  Inward Melting in a Vertical Tube Which Allows Free Expansion of the Phase-Change Medium , 1982 .

[103]  G. Ziskind,et al.  Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments , 2010 .

[104]  A. Sharma,et al.  On sharp-interface level-set method for heat and/or mass transfer induced Stefan problem , 2016 .

[105]  P. Eames,et al.  Numerical investigation of the influence of mushy zone parameter Amush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems , 2019, Applied Thermal Engineering.

[106]  Amir Faghri,et al.  A comprehensive numerical model for melting with natural convection , 2010 .

[107]  T. Rabczuk,et al.  Phase field simulations of coupled microstructure solidification problems via the strong form particle difference method , 2017, International Journal of Mechanics and Materials in Design.

[108]  Adrian Bejan,et al.  Scaling theory of melting with natural convection in an enclosure , 1988 .

[109]  Wei Shyy,et al.  An interface tracking method applied to morphological evolution during phase change , 1992 .

[110]  Chie Gau,et al.  Melting and Solidification of a Pure Metal on a Vertical Wall , 1986 .

[111]  Vaughan R Voller,et al.  ENTHALPY-POROSITY TECHNIQUE FOR MODELING CONVECTION-DIFFUSION PHASE CHANGE: APPLICATION TO THE MELTING OF A PURE METAL , 1988 .

[112]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[113]  S. Argyropoulos,et al.  Mathematical modelling of solidification and melting: a review , 1996 .

[114]  Britta Nestler,et al.  Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results , 2005 .