New Splitting Methods for Convection-Dominated Diffusion Problems and Navier-Stokes Equations
暂无分享,去创建一个
[1] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[2] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[3] P. Hood,et al. A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .
[4] J. Oden,et al. Finite Element Methods for Flow Problems , 2003 .
[5] T. Hughes,et al. MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .
[6] U. Ghia,et al. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .
[7] V. Thomée,et al. The lumped mass finite element method for a parabolic problem , 1985, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[8] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .
[9] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[10] T. Hughes,et al. The Galerkin/least-squares method for advective-diffusive equations , 1988 .
[11] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[12] L. Franca,et al. Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .
[13] T. Hughes,et al. Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .
[14] L. Franca,et al. Stabilized Finite Element Methods , 1993 .
[15] C. Farhat,et al. Bubble Functions Prompt Unusual Stabilized Finite Element Methods , 1994 .
[16] O. Zienkiewicz,et al. A general algorithm for compressible and incompressible flow—Part I. the split, characteristic‐based scheme , 1995 .
[17] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[18] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[19] O. Botella,et al. BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .
[20] L. Franca,et al. On an Improved Unusual Stabilized Finite Element Method for theAdvective-Reactive-Diffusive Equation , 1999 .
[21] O. Zienkiewicz,et al. The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems , 1999 .
[22] T. Hughes,et al. Large Eddy Simulation and the variational multiscale method , 2000 .
[23] Yinnian He,et al. Two-Level Method Based on Finite Element and Crank-Nicolson Extrapolation for the Time-Dependent Navier-Stokes Equations , 2003, SIAM J. Numer. Anal..
[24] E. Erturk,et al. Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers , 2004, ArXiv.
[25] O. C. Zienkiewicz,et al. The Finite Element Method for Fluid Dynamics , 2005 .
[26] Martin Stynes,et al. Steady-state convection-diffusion problems , 2005, Acta Numerica.
[27] A. Huerta,et al. Finite Element Methods for Flow Problems , 2003 .
[28] W. Layton,et al. A two-level variational multiscale method for convection-dominated convection-diffusion equations , 2006 .
[29] O. C. Zienkiewicz,et al. The Characteristic‐Based Split (CBS) scheme—a unified approach to fluid dynamics , 2006 .
[30] V. John,et al. A comparison of time-discretization/linearization approaches for the incompressible Navier-Stokes equations , 2006 .
[31] Weiwei Sun,et al. Stability and Convergence of the Crank-Nicolson/Adams-Bashforth scheme for the Time-Dependent Navier-Stokes Equations , 2007, SIAM J. Numer. Anal..
[32] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[33] Volker John,et al. Error Analysis of the SUPG Finite Element Discretization of Evolutionary Convection-Diffusion-Reaction Equations , 2011, SIAM J. Numer. Anal..