New Splitting Methods for Convection-Dominated Diffusion Problems and Navier-Stokes Equations

We present a new splitting method for time-dependent convention-dominated diusion problems. The original convention diusion system is split into two sub-systems: a pure convection system and a diusion system. At each time step, a convection problem and a diusion problem are solved successively. A few important features of the scheme lie in the facts that the convection subproblem is solved explicitly and multistep techniques can be used to essentially enlarge the stability region so that the resulting scheme behaves like a unconditionally stable scheme; while the diusion subproblem is always self-adjoint and coercive so that they can be solved eciently using many existing optimal preconditioned iterative solvers. The scheme can be extended for solving the Navier-Stokes equations, where the nonlinearity is resolved by a linear explicit multistep scheme at the convection step, while only a generalized Stokes problem is needed to solve at the diusion step and the major stiness matrix stays invariant in the time marching process. Numerical simulations are presented to demonstrate the stability, convergence and performance of the single-step and multistep variants of the new scheme.

[1]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[2]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[3]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[4]  J. Oden,et al.  Finite Element Methods for Flow Problems , 2003 .

[5]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[6]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[7]  V. Thomée,et al.  The lumped mass finite element method for a parabolic problem , 1985, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[8]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[9]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[10]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[11]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[12]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[13]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[14]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[15]  C. Farhat,et al.  Bubble Functions Prompt Unusual Stabilized Finite Element Methods , 1994 .

[16]  O. Zienkiewicz,et al.  A general algorithm for compressible and incompressible flow—Part I. the split, characteristic‐based scheme , 1995 .

[17]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[18]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[19]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[20]  L. Franca,et al.  On an Improved Unusual Stabilized Finite Element Method for theAdvective-Reactive-Diffusive Equation , 1999 .

[21]  O. Zienkiewicz,et al.  The characteristic-based-split procedure: an efficient and accurate algorithm for fluid problems , 1999 .

[22]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[23]  Yinnian He,et al.  Two-Level Method Based on Finite Element and Crank-Nicolson Extrapolation for the Time-Dependent Navier-Stokes Equations , 2003, SIAM J. Numer. Anal..

[24]  E. Erturk,et al.  Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers , 2004, ArXiv.

[25]  O. C. Zienkiewicz,et al.  The Finite Element Method for Fluid Dynamics , 2005 .

[26]  Martin Stynes,et al.  Steady-state convection-diffusion problems , 2005, Acta Numerica.

[27]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[28]  W. Layton,et al.  A two-level variational multiscale method for convection-dominated convection-diffusion equations , 2006 .

[29]  O. C. Zienkiewicz,et al.  The Characteristic‐Based Split (CBS) scheme—a unified approach to fluid dynamics , 2006 .

[30]  V. John,et al.  A comparison of time-discretization/linearization approaches for the incompressible Navier-Stokes equations , 2006 .

[31]  Weiwei Sun,et al.  Stability and Convergence of the Crank-Nicolson/Adams-Bashforth scheme for the Time-Dependent Navier-Stokes Equations , 2007, SIAM J. Numer. Anal..

[32]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[33]  Volker John,et al.  Error Analysis of the SUPG Finite Element Discretization of Evolutionary Convection-Diffusion-Reaction Equations , 2011, SIAM J. Numer. Anal..