lentiMPRA and MPRAflow for high-throughput functional characterization of gene regulatory elements

[1]  Nir Yosef,et al.  Identification and Massively Parallel Characterization of Regulatory Elements Driving Neural Induction. , 2019, Cell stem cell.

[2]  Beth K. Martin,et al.  Saturation mutagenesis of twenty disease-associated regulatory elements at single base-pair resolution , 2019, Nature Communications.

[3]  Beth K. Martin,et al.  A systematic evaluation of the design, orientation, and sequence context dependencies of massively parallel reporter assays , 2019, bioRxiv.

[4]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[5]  Fabian J. Theis,et al.  MPRAnalyze: statistical framework for massively parallel reporter assays , 2019, Genome Biology.

[6]  Edward S. Chen,et al.  Design tools for MPRA experiments , 2018, Bioinform..

[7]  Md. Abul Hassan Samee,et al.  Machine-learning dissection of Human Accelerated Regions in primate neurodevelopment , 2018, bioRxiv.

[8]  Richard Kennaway,et al.  On genes and form , 2017, Development.

[9]  S. Henikoff,et al.  Targeted in situ genome-wide profiling with high efficiency for low cell numbers , 2018, Nature Protocols.

[10]  Nadav Ahituv,et al.  Gene Regulatory Elements, Major Drivers of Human Disease. , 2017, Annual review of genomics and human genetics.

[11]  Paolo Di Tommaso,et al.  Nextflow enables reproducible computational workflows , 2017, Nature Biotechnology.

[12]  Michael T. McManus,et al.  A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity , 2016, bioRxiv.

[13]  Naman Jain,et al.  MPRAnator: a web-based tool for the design of massively parallel reporter assay experiments , 2015, bioRxiv.

[14]  David Baker,et al.  Multiplex pairwise assembly of array-derived DNA oligonucleotides , 2015, Nucleic acids research.

[15]  N. Ahituv,et al.  Decoding enhancers using massively parallel reporter assays. , 2015, Genomics.

[16]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[17]  Łukasz M. Boryń,et al.  Genome-Wide Quantitative Enhancer Activity Maps Identified by STARR-seq , 2013, Science.

[18]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[19]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[20]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[21]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[22]  S. Carroll,et al.  Evolution at Two Levels: On Genes and Form , 2005, PLoS biology.

[23]  J. Stamatoyannopoulos,et al.  Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Alice Young,et al.  Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  I. Amit,et al.  Comprehensive mapping of long-range interactions reveals folding principles of the human genome. , 2009, Science.

[26]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..