Insights into mammalian TE diversity through the curation of 248 genome assemblies
暂无分享,去创建一个
Voichita D. Marinescu | Andreas R. Pfenning | Matthew G. Johnson | Graham M. Hughes | BaDoi N. Phan | Irene M. Kaplow | Pardis C Sabeti | F. Di Palma | B. Birren | K. Lindblad-Toh | Z. Weng | M. Diekhans | K. Pollard | T. Marquès-Bonet | H. Clawson | B. Paten | O. Wallerman | W. Murphy | R. Hubley | E. Karlsson | E. Teeling | A. Navarro | G. Muntané | M. Springer | E. Eizirik | Jill E. Moore | S. Gazal | B. Shapiro | H. Lewin | Steven K. Reilly | Oliver A. Ryder | D. Ray | Jason Turner-Maier | C. Steiner | Jeremy Johnson | K. Fan | J. Meadows | Diana D. Moreno-Santillán | S. Kozyrev | L. Dávalos | M. Christmas | K. Koepfli | Morgan E. Wirthlin | Ross Swofford | G. Hickey | Abigail L. Lind | Joana Damas | Kathleen Morrill | Nicole M. Foley | J. Gatesy | R. Stevens | Alyssa J. Lawler | Joy-El R B Talbot | T. Lehmann | P. Sullivan | Kathleen C. Keough | K. Forsberg-Nilsson | L. Densmore | D. Genereux | Chaitanya Srinivasan | E. Sundström | Daniel E. Schäffer | David Juan | M. Nweeia | B. Kirilenko | S. Ortmann | Arian F. A. Smit | Aryn P. Wilder | Aitor Serres | Carlos J. Garcia | Juehan Wang | Chao Wang | I. Ruf | A. Valenzuela | Jessica M. Storer | M. Bianchi | Amanda Kowalczyk | C. Lawless | Xue Li | D. Levesque | Xiaomeng Zhang | Wynn K. Meyer | Jeb Rosen | A. Breit | Victor C. Mason | Andrew J. Harris | K. Bredemeyer | Nicole S. Paulat | Austin B. Osmanski | Michael Hiller | L. R. Moreira | Megan A. Supple | J. Korstian | Franziska Wagner | Ava Mackay-Smith | Jenna R. Grimshaw | Michaela K. Halsey | Kevin A. M. Sullivan | Carlos Garcia | H. Pratt | Allyson Hindle | Louise Ryan | Linda Goodman | Michael X. Dong | Joel C. Armstrong | Claudia Crookshanks | Jacquelyn Roberts | James R. Xue | Gregory Andrews | Cornelia Fanter
[1] W. Murphy,et al. A genomic timescale for placental mammal evolution , 2022, bioRxiv.
[2] OUP accepted manuscript , 2022, Molecular Biology And Evolution.
[3] T. Macfarlan,et al. Transposable elements shape the evolution of mammalian development , 2021, Nature Reviews Genetics.
[4] M. Blaxter,et al. Launching the Tree of Life Gateway , 2021, Wellcome open research.
[5] Stanley K. Sessions,et al. Gigantic Genomes Provide Empirical Tests of Transposable Element Dynamics Models , 2021, Genom. Proteom. Bioinform..
[6] A. Smit,et al. The Dfam community resource of transposable element families, sequence models, and genome annotations , 2021, Mobile DNA.
[7] M. Badawi,et al. Screening of Helicoverpa armigera Mobilome Revealed Transposable Element Insertions in Insecticide Resistance Genes , 2020, Insects.
[8] Voichita D. Marinescu,et al. A comparative genomics multitool for scientific discovery and conservation , 2020, Nature.
[9] A. Clark,et al. The evolutionary arms race between transposable elements and piRNAs in Drosophila melanogaster , 2020, BMC Evolutionary Biology.
[10] Jonah Gabry,et al. R-squared for Bayesian Regression Models , 2019, The American Statistician.
[11] G. Bourque,et al. Ten things you should know about transposable elements , 2018, Genome Biology.
[12] R. Kofler. Dynamics of Transposable Element Invasions with piRNA Clusters , 2018, bioRxiv.
[13] I. Arkhipova. Neutral Theory, Transposable Elements, and Eukaryotic Genome Evolution , 2018, Molecular biology and evolution.
[14] C. Schlötterer,et al. Molecular dissection of a natural transposable element invasion , 2018, Genome research.
[15] C. Feschotte,et al. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. , 2018, Current opinion in genetics & development.
[16] M Thomas P Gilbert,et al. Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species. , 2018, Annual review of animal biosciences.
[17] D. Ray,et al. Mammalian transposable elements and their impacts on genome evolution , 2018, Chromosome Research.
[18] Paul-Christian Bürkner,et al. brms: An R Package for Bayesian Multilevel Models Using Stan , 2017 .
[19] C. Feschotte,et al. Dynamics of genome size evolution in birds and mammals , 2017, Proceedings of the National Academy of Sciences.
[20] Jiqiang Guo,et al. Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.
[21] M. Quail,et al. The industrial melanism mutation in British peppered moths is a transposable element , 2016, Nature.
[22] D. Ray,et al. Accurate Transposable Element Annotation Is Vital When Analyzing New Genome Assemblies , 2016, Genome biology and evolution.
[23] O. Kohany,et al. Repbase Update, a database of repetitive elements in eukaryotic genomes , 2015, Mobile DNA.
[24] Tyler A. Elliott,et al. Do larger genomes contain more diverse transposable elements? , 2015, BMC Evolutionary Biology.
[25] Bronwen L. Aken,et al. Analyses of pig genomes provide insight into porcine demography and evolution , 2012, Nature.
[26] J. Jurka,et al. Families of transposable elements, population structure and the origin of species , 2011, Biology Direct.
[27] J. V. Moran,et al. LINE-1 elements in structural variation and disease. , 2011, Annual review of genomics and human genetics.
[28] Susan J. Brown,et al. Creating a buzz about insect genomes. , 2011, Science.
[29] Robert C. Edgar,et al. Interspersed repeats in the horse (Equus caballus); spatial correlations highlight conserved chromosomal domains. , 2010, Animal genetics.
[30] J. Hadfield,et al. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters , 2010, Journal of evolutionary biology.
[31] Joshua M. Stuart,et al. Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. , 2009, The Journal of heredity.
[32] Samuel Venner,et al. Dynamics of transposable elements: towards a community ecology of the genome. , 2009, Trends in genetics : TIG.
[33] Toni Gabaldón,et al. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..
[34] György Abrusán,et al. TEclass - a tool for automated classification of unknown eukaryotic transposable elements , 2009, Bioinform..
[35] T. Eickbush,et al. The diversity of retrotransposons and the properties of their reverse transcriptases. , 2008, Virus research.
[36] Jean L. Chang,et al. Initial sequence and comparative analysis of the cat genome. , 2007, Genome research.
[37] C. Feschotte,et al. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. , 2007, Gene.
[38] M. Batzer,et al. Emergence of primate genes by retrotransposon-mediated sequence transduction , 2006, Proceedings of the National Academy of Sciences.
[39] J. Jurka,et al. Self-synthesizing DNA transposons in eukaryotes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[40] P. Capy,et al. The First Steps of Transposable Elements Invasion , 2005, Genetics.
[41] A. Gelman. Discussion of "Analysis of variance--why it is more important than ever" by A. Gelman , 2005, math/0508530.
[42] P. Deininger,et al. Tandem insertions of Alu elements , 2004, Cytogenetic and Genome Research.
[43] J. Bonfield,et al. Finishing the euchromatic sequence of the human genome , 2004, Nature.
[44] Jianxin Ma,et al. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. , 2004, Genome research.
[45] Lisa M. D'Souza,et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution , 2004, Nature.
[46] Robert C. Edgar,et al. MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.
[47] E. Kirkness,et al. The Dog Genome: Survey Sequencing and Comparative Analysis , 2003, Science.
[48] Sudhir Kumar,et al. Mutation rates in mammalian genomes , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[49] Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.
[50] M. Boguski,et al. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. , 2000, Genome research.
[51] Thierry Heidmann,et al. Human LINE retrotransposons generate processed pseudogenes , 2000, Nature Genetics.
[52] E. Ostertag,et al. Transduction of 3'-flanking sequences is common in L1 retrotransposition. , 2000, Human molecular genetics.
[53] M. Churchill,et al. A purified mariner transposase is sufficient to mediate transposition in vitro. , 1996 .
[54] E. C. Pielou. The measurement of diversity in different types of biological collections , 1966 .
[55] B. Mcclintock. The origin and behavior of mutable loci in maize , 1950, Proceedings of the National Academy of Sciences.