Ly α blobs from cold streams undergoing Kelvin–Helmholtz instabilities

We present an analytic toy model for the radiation produced by the interaction between the cold streams thought to feed massive halos at high redshift and their hot CGM. We begin by deriving cosmologically motivated parameters for the streams as they enter the halo virial radius, $R_{\rm v}$, as a function of halo mass and redshift. For $10^{12}M_{\odot}$ halos at $z=2$, we find the Hydrogen number density in streams to be $n_{\rm H,s}\sim (0.1-5)\times 10^{-2}{\rm cm}^{-3}$, a factor of $\delta \sim (30-300)$ times denser than the hot CGM density, while the stream radii are in the range $R_{\rm s}\sim (0.03-0.50)R_{\rm v}$. As the streams accelerate towards the halo centre, they become denser and narrower. The stream-CGM interaction induces Kelvin-Helmholtz Instability (KHI), which leads to entrainment of CGM mass by the stream and therefore to stream deceleration by momentum conservation. Assuming that the entrainment rates derived by Mandelker et al. 2019 in the absence of gravity can be applied locally at each halocentric radius, we derive equations of motion for the stream in the halo. Using these, we derive the net acceleration, mass growth, and energy dissipation induced by the stream-CGM interaction, as a function of halo mass and redshift, for different CGM density profiles. For the range of model parameters considered, we find that the interaction can induce dissipation luminosities $L_{\rm diss}>10^{42}~{\rm erg~s^{-1}}$ within $\le 0.6 R_{\rm v}$ of halos with $M_{\rm v}>10^{12}M_{\odot}$ at $z=2$, with the emission scaling with halo mass and redshift approximately as $\propto M_{\rm v}\,(1+z)^2$. The magnitude and spatial extent of the emission produced in massive halos at high redshift is consistent with observed Ly$\alpha$ blobs, though better treatment of the UV background and self-shielding is needed to solidify this conclusion.

[1]  E. Ostriker,et al.  Multiphase Gas and the Fractal Nature of Radiative Turbulent Mixing Layers , 2020, The Astrophysical Journal.

[2]  R. Feldmann,et al.  Positive feedback at the disc–halo interface , 2020, Monthly Notices of the Royal Astronomical Society.

[3]  A. Dekel,et al.  Instability of supersonic cold streams feeding galaxies – IV. Survival of radiatively cooling streams , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  P. Hopkins,et al.  On the survival of cool clouds in the circumgalactic medium , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  S. Oh,et al.  How cold gas continuously entrains mass and momentum from a hot wind , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  J. Neill,et al.  Multi-filament gas inflows fuelling young star-forming galaxies , 2019, Nature Astronomy.

[7]  C. Pfrommer,et al.  The impact of magnetic fields on cold streams feeding galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  S. Cantalupo,et al.  A high baryon fraction in massive haloes at z ∼ 3 , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  A. Dekel,et al.  Kelvin–Helmholtz instability in self-gravitating streams , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  S. Oh,et al.  Simulations of radiative turbulent mixing layers , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  J. Prochaska,et al.  CGM properties in VELA and NIHAO simulations; the OVI ionization mechanism: dependence on redshift, halo mass, and radius , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  A. Dekel,et al.  Instability of supersonic cold streams feeding Galaxies – III. Kelvin–Helmholtz instability in three dimensions , 2018, Monthly Notices of the Royal Astronomical Society.

[13]  Elisabeta Lusso,et al.  QSO MUSEUM I: a sample of 61 extended Ly α-emission nebulae surroundingz∼ 3 quasars , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  S. Oh,et al.  The growth and entrainment of cold gas in a hot wind , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[15]  A. Dekel,et al.  Instability of supersonic cold streams feeding galaxies–II. Non-linear evolution of surface and body modes of Kelvin–Helmholtz instability , 2018, 1803.09105.

[16]  J. Silk,et al.  X-ray and SZ constraints on the properties of hot CGM , 2018, 1801.06557.

[17]  P. Dokkum,et al.  Cold Filamentary Accretion and the Formation of Metal-poor Globular Clusters and Halo Stars , 2017, The Astrophysical Journal.

[18]  J. Brinchmann,et al.  The MUSE Hubble Ultra Deep Field Survey - VIII. Extended Lyman-α haloes around high-z star-forming galaxies , 2017, 1710.10271.

[19]  Garching,et al.  Inspiraling Halo Accretion Mapped in Lyman-$\alpha$ Emission around a $z\sim3$ Quasar , 2017, 1709.08228.

[20]  J. Fynbo,et al.  Witnessing galaxy assembly in an extended z≈3 structure , 2017, 1707.07003.

[21]  E. Quataert,et al.  The impact of star formation feedback on the circumgalactic medium , 2016, 1606.06734.

[22]  Y. Birnboim,et al.  THE HYDRODYNAMIC STABILITY OF GASEOUS COSMIC FILAMENTS , 2016, 1609.03233.

[23]  A. Dekel,et al.  Instability of supersonic cold streams feeding galaxies – I. Linear Kelvin–Helmholtz instability with body modes , 2016, 1606.06289.

[24]  J. Neill,et al.  A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB , 2016 .

[25]  Simon J. Lilly,et al.  UBIQUITOUS GIANT Lyα NEBULAE AROUND THE BRIGHTEST QUASARS AT z ∼ 3.5 REVEALED WITH MUSE , 2016, 1605.01422.

[26]  J. Brinchmann,et al.  POSSIBLE SIGNATURES OF A COLD-FLOW DISK FROM MUSE USING A z ∼ 1 GALAXY–QUASAR PAIR TOWARD SDSS J1422−0001 , 2016, 1601.07567.

[27]  V. Springel,et al.  Zooming in on accretion – I. The structure of halo gas , 2015, 1503.02665.

[28]  J. Prochaska,et al.  Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe , 2015, Science.

[29]  D. Ceverino,et al.  Inflow velocities of cold flows streaming into massive galaxies at high redshifts , 2015, 1501.06913.

[30]  A. Dekel,et al.  Four phases of angular-momentum buildup in high-z galaxies: from cosmic-web streams through an extended ring to disc and bulge , 2014, 1407.7129.

[31]  J. Blaizot,et al.  Lyman-α blobs: polarization arising from cold accretion , 2014, 1604.02066.

[32]  J. Prochaska,et al.  QUASARS PROBING QUASARS. VII. THE PINNACLE OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDS MASSIVE z ∼ 2 GALAXIES , 2014, 1409.6344.

[33]  Anna Moore,et al.  INTERGALACTIC MEDIUM EMISSION OBSERVATIONS WITH THE COSMIC WEB IMAGER. I. THE CIRCUM-QSO MEDIUM OF QSO 1549+19, AND EVIDENCE FOR A FILAMENTARY GAS INFLOW , 2014, 1402.4816.

[34]  Anna Moore,et al.  INTERGALACTIC MEDIUM EMISSION OBSERVATIONS WITH THE COSMIC WEB IMAGER. II. DISCOVERY OF EXTENDED, KINEMATICALLY LINKED EMISSION AROUND SSA22 Lyα BLOB 2 , 2014, 1402.4809.

[35]  J. Prochaska,et al.  A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar , 2014, Nature.

[36]  Geneva,et al.  Signatures of Cool Gas Fueling a Star-Forming Galaxy at Redshift 2.3 , 2013, Science.

[37]  A. Dekel,et al.  Toy models for galaxy formation versus simulations , 2013, 1303.3009.

[38]  U. Diego,et al.  Moving mesh cosmology: tracing cosmological gas accretion , 2013, 1301.6753.

[39]  T. University,et al.  Detectability of cold streams into high-redshift galaxies by absorption lines , 2012, 1205.2021.

[40]  Volker Springel,et al.  Moving mesh cosmology: numerical techniques and global statistics , 2011, 1109.1281.

[41]  Leiden University,et al.  Properties of gas in and around galaxy haloes , 2011, 1111.5039.

[42]  R. Teyssier,et al.  Coplanar streams, pancakes and angular‐momentum exchange in high‐z disc galaxies , 2011, 1110.6209.

[43]  J. Schaye,et al.  Cold accretion flows and the nature of high column density H I absorption at redshift 3 , 2011, 1109.5700.

[44]  J. Prochaska,et al.  Absorption-line systems in simulated galaxies fed by cold streams , 2011, 1103.2130.

[45]  Chung-Pei Ma,et al.  The baryonic assembly of dark matter haloes , 2011, 1103.0001.

[46]  M. Pettini,et al.  DIFFUSE Lyα EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2011, 1101.2204.

[47]  J. Schaye,et al.  The rates and modes of gas accretion on to galaxies and their gaseous haloes , 2010, 1011.2491.

[48]  Tokyo,et al.  The Subaru Ly-alpha blob survey: A sample of 100 kpc Ly-alpha blobs at z=3 , 2010, 1010.2877.

[49]  D. Eisenstein,et al.  STRONG FIELD-TO-FIELD VARIATION OF Lyα NEBULAE POPULATIONS AT z ≃ 2.3 , 2010, 1008.2776.

[50]  M. Zaldarriaga,et al.  Lyα COOLING EMISSION FROM GALAXY FORMATION , 2010, 1005.3041.

[51]  A. Dekel,et al.  High-redshift clumpy discs and bulges in cosmological simulations , 2009, 0907.3271.

[52]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[53]  R. Teyssier,et al.  Gravity-driven Lyα blobs from cold streams into galaxies , 2009, 0911.5566.

[54]  L. Hernquist,et al.  SEEDING THE FORMATION OF COLD GASEOUS CLOUDS IN MILKY WAY-SIZE HALOS , 2009, 0905.2186.

[55]  Columbia,et al.  THE CHANDRA DEEP PROTOCLUSTER SURVEY: Lyα BLOBS ARE POWERED BY HEATING, NOT COOLING , 2009, 0904.0452.

[56]  A. Loeb,et al.  Lyα blobs as an observational signature of cold accretion streams into galaxies , 2009, 0902.2999.

[57]  D. Eisenstein,et al.  Accepted in ApJ. Preprint typeset using L ATEX style emulateapj v. 10/09/06 EXTENDED Lyα NEBULAE AT z ≃ 2.3: AN EXTREMELY RARE AND STRONGLY CLUSTERED POPULATION? 1 , 2022 .

[58]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[59]  P. Ocvirk,et al.  Bimodal gas accretion in the Horizon–MareNostrum galaxy formation simulation , 2008, 0803.4506.

[60]  A. Dey,et al.  The Overdense Environment of a Large Lyα Nebula at z ≈ 2.7 , 2008, 0803.4230.

[61]  R. Davé,et al.  Extended Lyman Alpha Nebulae at z=2.3: An Extremely Rare and Strongly Clustered Population , 2008 .

[62]  Celine Peroux,et al.  A Population of Faint Extended Line Emitters and the Host Galaxies of Optically Thick QSO Absorption Systems , 2007, 0711.1354.

[63]  D. Iono,et al.  High-Resolution Submillimeter Imaging of the Lyα Blob 1 in SSA 22 , 2007, 0707.0525.

[64]  Daniel J. B. Smith,et al.  Evidence for cold accretion onto a massive galaxy at high redshift , 2007, astro-ph/0703522.

[65]  I. Smail,et al.  Spitzer Identifications and Classifications of Submillimeter Galaxies in Giant, High-Redshift, Lyα-Emission-Line Nebulae , 2006, astro-ph/0612272.

[66]  J. Sommer-Larsen,et al.  Lyα Resonant Scattering in Young Galaxies: Predictions from Cosmological Simulations , 2006, astro-ph/0610761.

[67]  Michitoshi Yoshida,et al.  Systematic Survey of Extended Lyα Sources over z ~ 3-5 , 2006, astro-ph/0605360.

[68]  Toru Yamada,et al.  A Keck/DEIMOS Spectroscopy of Lyα Blobs at Redshift z = 3.1 , 2006, astro-ph/0602421.

[69]  C. Ledoux,et al.  A Lyman-α blob in the GOODS South field: evidence for cold accretion onto a dark matter halo ⋆ , 2005, astro-ph/0512396.

[70]  Z. Haiman,et al.  Lyα Radiation from Collapsing Protogalaxies. I. Characteristics of the Emergent Spectrum , 2005, astro-ph/0510407.

[71]  D. A. Lexander,et al.  SPITZER IDENTIFICATIONS AND CLASSIFICATIONS OF SUBMILLIMETER GALAXIES IN GIANT, HIGH-REDSHIFT LYMAN-α EMISSION-LINE NEBULAE , 2006 .

[72]  R. Bacon,et al.  The discovery of a galaxy-wide superwind from a young massive galaxy at redshift z ≈ 3 , 2005, Nature.

[73]  P. Møller,et al.  The extended lyman-α emission surrounding the z=3.04 radio-quiet QSO1205-30 : Primordial infalling gas illuminated by the quasar? , 2005, astro-ph/0503241.

[74]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[75]  Lars Hernquist,et al.  Lyα Emission from Structure Formation , 2004, astro-ph/0409736.

[76]  P. Møller,et al.  The Lyman-α glow of gas falling into the dark matter halo of a z = 3 galaxy , 2004, Nature.

[77]  M. Mori,et al.  The Nature of Lyα Blobs: Supernova-dominated Primordial Galaxies , 2004, astro-ph/0408410.

[78]  S. Okamura,et al.  A Subaru Search for Lyα Blobs in and around the Protocluster Region At Redshift z = 3.1 , 2004, astro-ph/0405221.

[79]  G. Williger,et al.  The Distribution of Lyα-Emitting Galaxies at z = 2.38 , 2004 .

[80]  Povilas Palunas,et al.  The Distribution of Lyα-emitting Galaxies at z=2.38. II. Spectroscopy , 2003, astro-ph/0406413.

[81]  T. Nagao,et al.  On the Origin of Lyα Blobs at High Redshift: Kinematic Evidence of a Hyperwind Galaxy at z = 3.1 , 2003, astro-ph/0305028.

[82]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[83]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[84]  E. Komatsu,et al.  Universal gas density and temperature profile , 2001, astro-ph/0106151.

[85]  M. Rees,et al.  Extended Lyα Emission around Young Quasars: A Constraint on Galaxy Formation , 2001, astro-ph/0101174.

[86]  D. Weinberg,et al.  Cooling Radiation and the Lyα Luminosity of Forming Galaxies , 2000, astro-ph/0007205.

[87]  M. Giavalisco,et al.  Lyα Imaging of a Proto-Cluster Region at ⟨z⟩ = 3.09 , 1999, astro-ph/9910144.

[88]  D. Weinberg,et al.  Cosmological Simulations with TreeSPH , 1995, astro-ph/9509107.

[89]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[90]  P. Dimotakis Turbulent Free Shear Layer Mixing and Combustion , 1991 .

[91]  A. Fabian,et al.  Cooling flows in clusters of galaxies , 1984, Nature.