Copula and s-map on a quantum logic

A quantum logic is one of possible mathematical models for non-compatible random events. In this paper, we introduce and study functions called QL-copula and QL-co-copula on a quantum logic and we compare them with the classical definition of copula and co-copula, respectively. Finally, we show several examples of these functions by means of an s-map.

[1]  Olga Nánásiová Map for Simultaneous Measurements for a Quantum Logic , 2003 .

[2]  A. Khrennikov,et al.  Representation Theorem of Observables on a Quantum System , 2006 .

[3]  Olga Nánásiová,et al.  Maps on a quantum logic , 2010, Soft Comput..

[4]  R. Mesiar,et al.  On a family of copulas constructed from the diagonal section , 2006, Soft Comput..

[5]  Olga Nánásiová,et al.  Conditional states and joint distributions on MV-algebras , 2006, Kybernetika.

[6]  Zdenka Riecanová The existence of states on every Archimedean atomic lattice effect algebra with at most five blocks , 2008, Kybernetika.

[7]  Sylvia Pulmannová,et al.  S-map and tracial states , 2009, Inf. Sci..

[8]  R. Mesiar,et al.  Copulas: an Approach How to Model the Dependence Structure of Random Vectors , 2009 .

[9]  R. Nelsen An Introduction to Copulas , 1998 .

[10]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[11]  V. Varadarajan Geometry of quantum theory , 1968 .

[12]  P. Pták Some nearly Boolean orthomodular posets , 1998 .

[13]  Andrei Khrennikov Contextual viewpoint to quantum stochastics , 2003 .

[14]  Mirko Navara An orthomodular lattice admitting no group-valued measure , 1994 .

[15]  Sylvia Pulmannová,et al.  New trends in quantum structures , 2000 .

[16]  Marginality and Triangle Inequality , 2010 .

[17]  Gejza Dohnal,et al.  Markov property in quantum logic: A reflection , 2009, Inf. Sci..

[18]  Olga Choustova,et al.  Quantum probability and financial market , 2009, Inf. Sci..