Data Mining and Meta-Analysis on DNA Microarray Data

[1]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[2]  C. Yauk,et al.  Review of the literature examining the correlation among DNA microarray technologies , 2007, Environmental and molecular mutagenesis.

[3]  David G Besselsen,et al.  Practical aspects of experimental design in animal research. , 2002, ILAR journal.

[4]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[5]  Robert Shaw,et al.  Use of factorial designs to optimize animal experiments and reduce animal use. , 2002, ILAR journal.

[6]  Purvesh Khatri,et al.  Onto-Tools: an ensemble of web-accessible, ontology-based tools for the functional design and interpretation of high-throughput gene expression experiments , 2004, Nucleic Acids Res..

[7]  Roger E Bumgarner,et al.  Sample size for detecting differentially expressed genes in microarray experiments , 2004, BMC Genomics.

[8]  H K Dressman,et al.  Identification of genes associated with ovarian cancer metastasis using microarray expression analysis , 2006, International Journal of Gynecologic Cancer.

[9]  Henrik Andersson,et al.  Evaluation of microarray data normalization procedures using spike-in experiments , 2006, BMC Bioinformatics.

[10]  Cheng Li,et al.  Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application , 2001, Genome Biology.

[11]  Ming Ouyang,et al.  A meta-data based method for DNA microarray imputation , 2007, BMC Bioinformatics.

[12]  E. Thiel,et al.  Prediction of qualitative outcome of oligonucleotide microarray hybridization by measurement of RNA integrity using the 2100 Bioanalyzer™ capillary electrophoresis system , 2009, Annals of Hematology.

[13]  Bassem A. Hassan,et al.  Gene prioritization through genomic data fusion , 2006, Nature Biotechnology.

[14]  Y. Zhang,et al.  IntAct—open source resource for molecular interaction data , 2006, Nucleic Acids Res..

[15]  Z. Lee,et al.  Gene Extraction and Identification Tumor/Cancer for Microarray Data of Ovarian Cancer , 2006, TENCON 2006 - 2006 IEEE Region 10 Conference.

[16]  Gary Hardiman,et al.  Microarray platforms--comparisons and contrasts. , 2004, Pharmacogenomics.

[17]  Gordon K Smyth,et al.  Statistical Applications in Genetics and Molecular Biology Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2011 .

[18]  Ibrahim Emam,et al.  Gene Expression Atlas at the European Bioinformatics Institute , 2009, Nucleic Acids Res..

[19]  Huiqing Liu,et al.  Use of extreme patient samples for outcome prediction from gene expression data , 2005, Bioinform..

[20]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[21]  Jeff Kabachinski What's the forecast for cloud computing in healthcare? , 2011, Biomedical instrumentation & technology.

[22]  Trey Ideker,et al.  Testing for Differentially-Expressed Genes by Maximum-Likelihood Analysis of Microarray Data , 2000, J. Comput. Biol..

[23]  Bart De Moor,et al.  BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis , 2005, Bioinform..

[24]  Harry Hochheiser,et al.  The FaceBase Consortium: a comprehensive program to facilitate craniofacial research. , 2011, Developmental biology.

[25]  Gang Qu,et al.  AffyProbeMiner: a web resource for computing or retrieving accurately redefined Affymetrix probe sets , 2007, Bioinform..

[26]  Stephen M. Hewitt,et al.  Post-analysis follow-up and validation of microarray experiments , 2002, Nature Genetics.

[27]  G Nikiforidis,et al.  Operational criteria for selecting a cDNA microarray data normalization algorithm. , 2006, Oncology reports.

[28]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[29]  Tao Han,et al.  Cross-platform comparability of microarray technology: Intra-platform consistency and appropriate data analysis procedures are essential , 2005, BMC Bioinformatics.

[30]  N. Pavelka,et al.  Cytoskeletal Rearrangements in Synovial Fibroblasts as a Novel Pathophysiological Determinant of Modeled Rheumatoid Arthritis , 2005, PLoS genetics.

[31]  Chung-Yen Lin,et al.  POWER: PhylOgenetic WEb Repeater—an integrated and user-optimized framework for biomolecular phylogenetic analysis , 2005, Nucleic Acids Res..

[32]  S. P. Fodor,et al.  Light-directed, spatially addressable parallel chemical synthesis. , 1991, Science.

[33]  P. Robinson,et al.  Walking the interactome for prioritization of candidate disease genes. , 2008, American journal of human genetics.

[34]  W. El-Deiry,et al.  p53 downstream targets and chemosensitivity , 2003, Cell Death and Differentiation.

[35]  Armando Fox,et al.  Cloud Computing—What's in It for Me as a Scientist? , 2011, Science.

[36]  Richard Simon,et al.  Using DNA microarrays for diagnostic and prognostic prediction , 2003, Expert review of molecular diagnostics.

[37]  D. Allison,et al.  Microarray data analysis: from disarray to consolidation and consensus , 2006, Nature Reviews Genetics.

[38]  Natalia Shulzhenko,et al.  Microarrays for cancer diagnosis and classification. , 2007, Advances in experimental medicine and biology.

[39]  R. Simon,et al.  Sample size determination in microarray experiments for class comparison and prognostic classification. , 2005, Biostatistics.

[40]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[41]  Magnus Åstrand,et al.  Contrast Normalization of Oligonucleotide Arrays , 2003, J. Comput. Biol..

[42]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[43]  Rafael A. Irizarry,et al.  A Model-Based Background Adjustment for Oligonucleotide Expression Arrays , 2004 .

[44]  Dipanwita Roy Chowdhury,et al.  Human protein reference database as a discovery resource for proteomics , 2004, Nucleic Acids Res..

[45]  N. Patil,et al.  DNA hybridization to mismatched templates: a chip study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  A. Dupuy,et al.  Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. , 2007, Journal of the National Cancer Institute.

[47]  Janet Woodcock,et al.  The FDA critical path initiative and its influence on new drug development. , 2008, Annual review of medicine.

[48]  S. Coons The FDA's critical path initiative: a brief introduction. , 2009, Clinical therapeutics.

[49]  Philippe Dessen,et al.  Comparison of the latest commercial short and long oligonucleotide microarray technologies , 2006, BMC Genomics.

[50]  Yusuke Nakamura,et al.  Expression profiles of non-small cell lung cancers on cDNA microarrays: Identification of genes for prediction of lymph-node metastasis and sensitivity to anti-cancer drugs , 2003, Oncogene.

[51]  G. Churchill Fundamentals of experimental design for cDNA microarrays , 2002, Nature Genetics.

[52]  Yingdong Zhao,et al.  Molecular Differentiation of High- and Moderate-Grade Human Prostate Cancer by cDNA Microarray Analysis , 2003, Diagnostic molecular pathology : the American journal of surgical pathology, part B.

[53]  R. Tibshirani,et al.  Empirical bayes methods and false discovery rates for microarrays , 2002, Genetic epidemiology.

[54]  Carole A. Goble,et al.  Taverna: a tool for building and running workflows of services , 2006, Nucleic Acids Res..

[55]  L. Ellisen,et al.  A microRNA-dependent program controls p 53-independent survival and chemosensitivity in human and murine squamous cell carcinoma , 2018 .

[56]  Wei Wu,et al.  Evaluation of normalization methods for cDNA microarray data by k-NN classification , 2005, BMC Bioinformatics.

[57]  Martin Vingron,et al.  Variance stabilization applied to microarray data calibration and to the quantification of differential expression , 2002, ISMB.

[58]  T. Stijnen,et al.  Review: a gentle introduction to imputation of missing values. , 2006, Journal of clinical epidemiology.

[59]  John Quackenbush,et al.  Multiple-laboratory comparison of microarray platforms , 2005, Nature Methods.

[60]  James E. Allen,et al.  T1DBase: integration and presentation of complex data for type 1 diabetes research , 2006, Nucleic Acids Res..

[61]  Patrick F Sullivan,et al.  False discoveries and models for gene discovery. , 2003, Trends in genetics : TIG.

[62]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[63]  E. Erdfelder,et al.  Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses , 2009, Behavior research methods.

[64]  Jon W. Huss,et al.  BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources , 2009, Genome Biology.

[65]  R. McIndoe,et al.  Microarray experimental design: power and sample size considerations. , 2003, Physiological genomics.

[66]  Yan Wu,et al.  Quantitative Quality Control in Microarray Experiments and the Application in Data Filtering, Normalization and False Positive Rate Prediction , 2003, Bioinform..

[67]  M. Shirane,et al.  Chemosensitivity-related genes of breast cancer detected by DNA microarray. , 2007, Anticancer research.

[68]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[69]  Rickard Sandberg,et al.  Comparative microarray analysis. , 2006, Omics : a journal of integrative biology.

[70]  Atul J. Butte,et al.  Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks , 2005, BMC Bioinformatics.

[71]  W. Huber,et al.  Model-based variance-stabilizing transformation for Illumina microarray data , 2008, Nucleic acids research.

[72]  Andrew Williams,et al.  Automation of cDNA microarray hybridization and washing yields improved data quality. , 2005, Journal of biochemical and biophysical methods.

[73]  Nam-Soon Kim,et al.  Identification of gastric cancer-related genes using a cDNA microarray containing novel expressed sequence tags expressed in gastric cancer cells. , 2005, Clinical cancer research : an official journal of the American Association for Cancer Research.

[74]  L. K. Buehler,et al.  Normalizing DNA microarray data. , 2002, Current issues in molecular biology.

[75]  Michael G. Barnes,et al.  Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms , 2005, Nucleic acids research.

[76]  Pierre R. Bushel,et al.  Assessing Gene Significance from cDNA Microarray Expression Data via Mixed Models , 2001, J. Comput. Biol..

[77]  Chhanda Ray,et al.  Cancer Identification and Gene Classification using DNA Microarray Gene Expression Patterns , 2011 .

[78]  Matthew E. Ritchie,et al.  A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data , 2009, Nucleic acids research.

[79]  Sin-Ho Jung,et al.  Sample size for FDR-control in microarray data analysis , 2005, Bioinform..

[80]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[81]  R. Paschke,et al.  Perspectives and limitations of microarray-based gene expression profiling of thyroid tumors. , 2007, Endocrine reviews.

[82]  Z. Szallasi,et al.  Reliability and reproducibility issues in DNA microarray measurements. , 2006, Trends in genetics : TIG.

[83]  Hanlee P. Ji,et al.  The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. , 2006, Nature biotechnology.

[84]  A. Nekrutenko,et al.  Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences , 2010, Genome Biology.

[85]  K. Coombes,et al.  Deriving chemosensitivity from cell lines: Forensic bioinformatics and reproducible research in high-throughput biology , 2009, 1010.1092.

[86]  Harm van Bakel,et al.  In control: systematic assessment of microarray performance , 2004, EMBO reports.

[87]  Gary A. Churchill,et al.  Analysis of Variance for Gene Expression Microarray Data , 2000, J. Comput. Biol..

[88]  Brian D Halligan,et al.  Low cost, scalable proteomics data analysis using Amazon's cloud computing services and open source search algorithms. , 2009, Journal of proteome research.

[89]  J. Wojcik,et al.  The protein–protein interaction map of Helicobacter pylori , 2001, Nature.

[90]  Edgar Erdfelder,et al.  G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences , 2007, Behavior research methods.

[91]  John Quackenbush Microarrays--Guilt by Association , 2003, Science.

[92]  H J Keselman,et al.  Controlling the rate of Type I error over a large set of statistical tests. , 2002, The British journal of mathematical and statistical psychology.

[93]  Robert Tibshirani,et al.  A simple method for assessing sample sizes in microarray experiments , 2006, BMC Bioinformatics.

[94]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[95]  Zoltan Szallasi,et al.  Increased measurement accuracy for sequence-verified microarray probes. , 2004, Physiological genomics.

[96]  Rickard Sandberg,et al.  Improved precision and accuracy for microarrays using updated probe set definitions , 2007, BMC Bioinformatics.

[97]  Vassilis Aidinis,et al.  Comparative expression profiling in pulmonary fibrosis suggests a role of hypoxia-inducible factor-1alpha in disease pathogenesis. , 2007, American journal of respiratory and critical care medicine.

[98]  Seon-Young Kim,et al.  PAGE: Parametric Analysis of Gene Set Enrichment , 2005, BMC Bioinform..

[99]  Danh V. Nguyen,et al.  Tumor classification by partial least squares using microarray gene expression data , 2002, Bioinform..

[100]  Terrence S. Furey,et al.  Promoter Region-Based Classification of Genes , 2000, Pacific Symposium on Biocomputing.

[101]  Wendy Wolfson caBIG: seeking cancer cures by bits and bytes. , 2008, Chemistry & biology.

[102]  W. Foulkes,et al.  Identification of genes associated with head and neck carcinogenesis by cDNA microarray comparison between matched primary normal epithelial and squamous carcinoma cells , 2002, Oncogene.

[103]  Jerilyn A Timlin,et al.  Scanning microarrays: current methods and future directions. , 2006, Methods in enzymology.

[104]  S. Dudoit,et al.  STATISTICAL METHODS FOR IDENTIFYING DIFFERENTIALLY EXPRESSED GENES IN REPLICATED cDNA MICROARRAY EXPERIMENTS , 2002 .

[105]  Daniel J. Blankenberg,et al.  Galaxy: A Web‐Based Genome Analysis Tool for Experimentalists , 2010, Current protocols in molecular biology.

[106]  Angela K Dinh Cloud computing 101. , 2011, Journal of AHIMA.

[107]  Rainer Breitling,et al.  Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments , 2004, FEBS letters.

[108]  M. Oh,et al.  Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. , 2001, Nucleic acids research.

[109]  R. Kolde,et al.  Mining for coexpression across hundreds of datasets using novel rank aggregation and visualization methods , 2009, Genome Biology.

[110]  Steen Knudsen,et al.  Alternative mapping of probes to genes for Affymetrix chips , 2004, BMC Bioinformatics.

[111]  Douglas G Altman,et al.  Guidelines for the design and statistical analysis of experiments using laboratory animals. , 2002, ILAR journal.

[112]  RAINER BREITLING,et al.  Rank-based Methods as a Non-parametric Alternative of the T-statistic for the Analysis of Biological Microarray Data , 2005, J. Bioinform. Comput. Biol..

[113]  Gary Ruvkun,et al.  Glimpses of a Tiny RNA World , 2001, Science.

[114]  Rajiv Mahajan,et al.  Food and drug administration’s critical path initiative and innovations in drug development paradigm: Challenges, progress, and controversies , 2010, Journal of pharmacy & bioallied sciences.

[115]  I. Halil Kavakli,et al.  Optimization Based Tumor Classification from Microarray Gene Expression Data , 2011, PloS one.

[116]  Joseph Hackett,et al.  Quality control of microarray assays for toxicogenomic and in vitro diagnostic applications. , 2008, Methods in molecular biology.

[117]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[118]  Damian Smedley,et al.  BioMart – biological queries made easy , 2009, BMC Genomics.

[119]  Rainer Breitling,et al.  Network theory to understand microarray studies of complex diseases. , 2006, Current molecular medicine.

[120]  Stefan Michiels,et al.  Prediction of cancer outcome with microarrays: a multiple random validation strategy , 2005, The Lancet.

[121]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[122]  Michael C. Schatz,et al.  Cloud Computing and the DNA Data Race , 2010, Nature Biotechnology.

[123]  T. Myers,et al.  An informatics approach identifying markers of chemosensitivity in human cancer cell lines. , 2000, Cancer research.

[124]  Rolf Apweiler,et al.  The Ontology Lookup Service, a lightweight cross-platform tool for controlled vocabulary queries , 2006, BMC Bioinformatics.

[125]  Charles M Perou,et al.  Microarrays and Epidemiology: Ensuring the Impact and Accessibility of Research Findings , 2009, Cancer Epidemiology Biomarkers & Prevention.

[126]  X. Cui,et al.  Statistical tests for differential expression in cDNA microarray experiments , 2003, Genome Biology.

[127]  Ian M. Donaldson,et al.  The Biomolecular Interaction Network Database and related tools 2005 update , 2004, Nucleic Acids Res..

[128]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[129]  Junjun Zhang,et al.  BioMart Central Portal—unified access to biological data , 2009, Nucleic Acids Res..

[130]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[131]  John D. Storey A direct approach to false discovery rates , 2002 .

[132]  Yoav Benjamini,et al.  Identifying differentially expressed genes using false discovery rate controlling procedures , 2003, Bioinform..

[133]  Joel H. Saltz,et al.  caGrid 1.0: A Grid Enterprise Architecture for Cancer Research , 2007, AMIA.

[134]  Yusuke Nakamura,et al.  An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines. , 2002, Cancer research.

[135]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[136]  Christina Backes,et al.  GeneTrail—advanced gene set enrichment analysis , 2007, Nucleic Acids Res..

[137]  M. Ashburner,et al.  The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration , 2007, Nature Biotechnology.

[138]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[139]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[140]  Jun Lu,et al.  Transcript-based redefinition of grouped oligonucleotide probe sets using AceView: High-resolution annotation for microarrays , 2007, BMC Bioinform..

[141]  Song Liu,et al.  Error control variability in pathway-based microarray analysis , 2009, Bioinform..

[142]  Kevin C. Dorff,et al.  The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models , 2010, Nature Biotechnology.

[143]  S. Nelson,et al.  DNA-microarray analysis of brain cancer: molecular classification for therapy , 2004, Nature Reviews Neuroscience.

[144]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[145]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[146]  Wei Chen,et al.  Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data , 2005, BMC Bioinformatics.

[147]  Taesung Park,et al.  Statistical tests for identifying differentially expressed genes in time-course microarray experiments , 2003, Bioinform..

[148]  T. Barrette,et al.  Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. , 2007, Neoplasia.

[149]  John D. Storey,et al.  Supervised normalization of microarrays , 2010, Bioinform..

[150]  D. Lockhart,et al.  Functional Genomics , 1999, Springer Netherlands.

[151]  Felix Naef,et al.  Solving the riddle of the bright mismatches: labeling and effective binding in oligonucleotide arrays. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[152]  K. K. Dobbin,et al.  Characterizing dye bias in microarray experiments , 2005, Bioinform..

[153]  C. Ball,et al.  Repeatability of published microarray gene expression analyses , 2009, Nature Genetics.

[154]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[155]  Ka Yee Yeung,et al.  Validating clustering for gene expression data , 2001, Bioinform..

[156]  S. Grant,et al.  Proteomics in postgenomic neuroscience: the end of the beginning , 2004, Nature Neuroscience.

[157]  R. Kitchen,et al.  Relative impact of key sources of systematic noise in Affymetrix and Illumina gene-expression microarray experiments , 2011, BMC Genomics.

[158]  Sergio Contrino,et al.  ArrayExpress—a public repository for microarray gene expression data at the EBI , 2004, Nucleic Acids Res..

[159]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[160]  Purvesh Khatri,et al.  Babel's tower revisited: a universal resource for cross-referencing across annotation databases , 2006, Bioinform..

[161]  R. Myers,et al.  Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data , 2005, Nucleic acids research.

[162]  Nikola Kasabov,et al.  Prediction of clinical behaviour and treatment for cancers. , 2003, Applied bioinformatics.

[163]  Tero Aittokallio,et al.  Integrating probe-level expression changes across generations of Affymetrix arrays , 2005, Nucleic acids research.

[164]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[165]  Gary A. Churchill,et al.  Importance of randomization in microarray experimental designs with Illumina platforms , 2009, Nucleic acids research.

[166]  Dennis B. Troup,et al.  NCBI GEO: mining millions of expression profiles—database and tools , 2004, Nucleic Acids Res..