Affine frames, quasi-affine frames, and their duals

The notion of quasi-affine frame was recently introduced by Ron and Shen [9] in order to achieve shift-invariance of the discrete wavelet transform. In this paper, we establish a duality-preservation theorem for quasi-affine frames. Furthermore, the preservation of frame bounds when changing an affine frame to a quasi-affine frame is shown to hold without the decay assumptions in [9]. Our consideration leads naturally to the study of certain sesquilinear operators which are defined by two affine systems. The translation-invariance of such operators is characterized in terms of certain intrinsic properties of the two affine systems.