Rice and Rice‐Shapiro Theorems for transfinite correction grammars

Hay and, then, Johnson extended the classic Rice and Rice‐Shapiro Theorems for computably enumerable sets, to analogs for all the higher levels in the finite Ershov Hierarchy. The present paper extends their work (with some motivations presented) to analogs in the transfinite Ershov Hierarchy. Some of the transfinite cases are done for all transfinite notations in Kleene's important system of notations, \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {O}$\end{document}. Other cases are done for all transfinite notations in a very natural, proper subsystem \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {O}_{\mathrm{Cantor}}$\end{document} of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {O}$\end{document}, where \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathcal {O}_{\mathrm{Cantor}}$\end{document} has at least one notation for each constructive ordinal. In these latter cases it is open as to what happens for the entire set of transfinite notations in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$(\mathcal {O} -\mathcal {O}_{\mathrm{Cantor}})$\end{document}.

[1]  Stephen Cole Kleene,et al.  On notation for ordinal numbers , 1938, Journal of Symbolic Logic.

[2]  S. Kleene On the Forms of the Predicates in the Theory of Constructive Ordinals , 1944 .

[3]  H. Rice Classes of recursively enumerable sets and their decision problems , 1953 .

[4]  S. Kleene On the Forms of the Predicates in the Theory of Constructive Ordinals (Second Paper) , 1955 .

[5]  Manuel Blum,et al.  A Machine-Independent Theory of the Complexity of Recursive Functions , 1967, JACM.

[6]  Y. Ershov On a hierarchy of sets, II , 1968 .

[7]  Yu. L. Ershov,et al.  On a hierarchy of sets. III , 1968 .

[8]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[9]  L. Hay Rice Theorems For D.R.E. Sets , 1975, Canadian Journal of Mathematics.

[10]  Nancy Johnson Rice Theorems for ∑ n -1 Sets , 1977, Canadian Journal of Mathematics.

[11]  Paul Young,et al.  An introduction to the general theory of algorithms , 1978 .

[12]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[13]  R. Epstein,et al.  Hierarchies of sets and degrees below 0 , 1981 .

[14]  V. L. Selivanov Hierarchy of limiting computations , 1984 .

[15]  G. Sacks Higher recursion theory , 1990 .

[16]  Andreas Weiermann Proving Termination for Term Rewriting Systems , 1991, CSL.

[17]  Carl H. Smith,et al.  On the role of procrastination for machine learning , 1992, COLT '92.

[18]  J. Case,et al.  Subrecursive Programming Systems: Complexity & Succinctness , 1994 .

[19]  J. Case,et al.  Subrecursive programming systems - complexity and succinctness , 1994 .

[20]  James S. Royer,et al.  Subrecursive Programming Systems , 1994, Progress in Theoretical Computer Science.

[21]  Wilfried Buchholz,et al.  Proof-Theoretic Analysis of Termination Proofs , 1995, Ann. Pure Appl. Log..

[22]  Christopher J. Ash,et al.  Recursive Structures and Ershov's Hierarchy , 1996, Math. Log. Q..

[23]  Generalized notions of mind change complexity , 1997, COLT '97.

[24]  John K. Truss,et al.  The Realm of Orinal Analysis , 1999 .

[25]  Carl H. Smith,et al.  Inductive Inference with Procrastination: Back to Definitions , 1999, Fundam. Informaticae.

[26]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[27]  Andris Ambainis,et al.  Parsimony hierarchies for inductive inference , 2004, Journal of Symbolic Logic.

[28]  Michael Rathjen,et al.  The Realm of Ordinal Analysis , 2007 .

[29]  F. Stephan,et al.  Set theory , 2018, Mathematical Statistics with Applications in R.

[30]  John Case,et al.  Learning correction grammars , 2007, The Journal of Symbolic Logic.

[31]  John Case,et al.  Dynamically Delayed Postdictive Completeness and Consistency in Learning , 2008, ALT.

[32]  Robert I. Soare,et al.  Turing oracle machines, online computing, and three displacements in computability theory , 2009, Ann. Pure Appl. Log..

[33]  JAMES MURPHY,et al.  CARDINAL AND ORDINAL NUMBERS , 2009 .