Clarifying the zircon Hf isotope record of crust–mantle evolution

[1]  C. Hawkesworth,et al.  Growth and Differentiation of the Continental Crust from Isotope Studies of Accessory Minerals , 2014 .

[2]  M. V. Kranendonk,et al.  Hafnium and iron isotopes in early Archean komatiites record a plume-driven convection cycle in the Hadean Earth , 2014 .

[3]  A. Kemp,et al.  Neodymium isotope equilibration during crustal metamorphism revealed by in situ microanalysis of REE-rich accessory minerals , 2014 .

[4]  A. Gerdes,et al.  The oldest zircons of Africa—Their U–Pb–Hf–O isotope and trace element systematics, and implications for Hadean to Archean crust–mantle evolution , 2014 .

[5]  J. Vervoort,et al.  Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data , 2014 .

[6]  C. Fisher,et al.  Accurate Hf isotope determinations of complex zircons using the “laser ablation split stream” method , 2014 .

[7]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[8]  Seung Ryeol Lee,et al.  The Itsaq Gneiss Complex of Greenland: Episodic 3900 to 3660 Ma juvenile crust formation and recycling in the 3660 to 3600 Ma Isukasian orogeny , 2013, American Journal of Science.

[9]  J. Cottle,et al.  Laser-ablation split-stream ICP petrochronology , 2013 .

[10]  T. Iizuka,et al.  Evolution of the African continental crust as recorded by U–Pb, Lu–Hf and O isotopes in detrital zircons from modern rivers , 2013 .

[11]  J. Vervoort,et al.  No significant production of continental crust prior to 3.8 Ga , 2012 .

[12]  E. Watson,et al.  Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas , 2012 .

[13]  F. Albarède,et al.  Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust , 2012 .

[14]  Peter A. Cawood,et al.  A Change in the Geodynamics of Continental Growth 3 Billion Years Ago , 2012, Science.

[15]  M. Rosing,et al.  The origin of decoupled Hf-Nd isotope compositions in Eoarchean rocks from southern West Greenland , 2011 .

[16]  C. Hawkesworth,et al.  Understanding the roles of crustal growth and preservation in the detrital zircon record , 2011 .

[17]  A. Stepanov,et al.  Growth rate of the preserved continental crust: II. Constraints from Hf and O isotopes in detrital zircons from Greater Russian Rivers , 2011 .

[18]  S. König,et al.  Highly depleted Hadean mantle reservoirs in the sources of early Archean arc-like rocks, Isua supracrustal belt, southern West Greenland , 2010 .

[19]  W. Griffin,et al.  The growth of the continental crust: Constraints from zircon Hf-isotope data , 2010 .

[20]  A. Gerdes,et al.  The behavior of the Hf isotope system in radiation-damaged zircon during experimental hydrothermal alteration , 2010 .

[21]  J. Vervoort,et al.  Hadean crustal evolution revisited: New constraints from Pb-Hf isotope systematics of the Jack Hills zircons , 2010 .

[22]  T. Hirata,et al.  Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth , 2010 .

[23]  B. Tikoff,et al.  Mesozoic magmatism and deformation in the northern Owyhee Mountains, Idaho: Implications for along-zone variations for the western Idaho shear zone , 2010 .

[24]  Peter A. Cawood,et al.  The generation and evolution of the continental crust , 2010, Journal of the Geological Society.

[25]  M. Whitehouse,et al.  On the difficulty of assigning crustal residence, magmatic protolith and metamorphic ages to Lewisian granulites: constraints from combined in situ U–Pb and Lu–Hf isotopes , 2010 .

[26]  A. Gerdes,et al.  Zircon formation versus zircon alteration — New insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt , 2009 .

[27]  J. Darling,et al.  Concurrent Pb–Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas , 2009 .

[28]  T. Hirata,et al.  Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: Evidence from in-situ Lu–Hf isotope analysis of zircon , 2009 .

[29]  S. Eggins,et al.  Rate of growth of the preserved North American continental crust: Evidence from Hf and O isotopes in Mississippi detrital zircons , 2009 .

[30]  T. Harrison,et al.  Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions , 2008, Nature.

[31]  A. Gerdes,et al.  U Pb and Lu Hf isotope record of detrital zircon grains from the Limpopo Belt Evidence for crustal recycling at the Hadean to early-Archean transition , 2008 .

[32]  A. Bouvier,et al.  The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets , 2008 .

[33]  Martina Menneken,et al.  A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills , 2008, Nature.

[34]  D. Zhuang,et al.  In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite , 2008 .

[35]  T. Harrison,et al.  Early (≥ 4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry results for Hadean zircons , 2008 .

[36]  F. Albarède,et al.  Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust , 2008 .

[37]  D. Günther,et al.  Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS , 2008 .

[38]  N. Arndt,et al.  Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array , 2008 .

[39]  K. Mezger,et al.  Initial Hf isotope compositions in magmatic zircon from early Proterozoic rocks from the Gawler Craton, Australia: A test for zircon model ages , 2007 .

[40]  C. M. Gray,et al.  Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon , 2007, Science.

[41]  Dunyi Liu,et al.  Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet , 2006 .

[42]  W. Griffin,et al.  Widespread Archean basement beneath the Yangtze craton , 2006 .

[43]  S. Wilde,et al.  Comment on "Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga" , 2006, Science.

[44]  M. Whitehouse,et al.  Re-evaluation of the origin and evolution of > 4.2 Ga zircons from the Jack Hills metasedimentary rocks , 2006 .

[45]  B. Windley,et al.  4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada : Evidence for early continental crust , 2006 .

[46]  C. Hawkesworth,et al.  Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution , 2006 .

[47]  C. Hawkesworth,et al.  Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon , 2006, Nature.

[48]  W. Griffin,et al.  Archaean and Proterozoic crustal evolution in the Eastern Succession of the Mt Isa district, Australia: U – Pb and Hf-isotope studies of detrital zircons , 2006 .

[49]  T. M. Harrison,et al.  Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga , 2005, Science.

[50]  S. Wilde,et al.  Magmatic δ18O in 4400–3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean , 2005 .

[51]  J. Mattinson Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages , 2005 .

[52]  T. M. Harrison,et al.  Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth , 2005, Science.

[53]  J. Crowley,et al.  Detrital Zircon from the Jack Hills and Mount Narryer, Western Australia: Evidence for Diverse >4.0 Ga Source Rocks , 2005, The Journal of Geology.

[54]  Dunyi Liu,et al.  Internal zoning and U–Th–Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism , 2004 .

[55]  S. Eggins,et al.  Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation , 2004 .

[56]  W. Griffin,et al.  Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons , 2004 .

[57]  C. Isachsen,et al.  The decay constant of 176Lu determined from Lu-Hf and U-Pb isotope systematics of terrestrial Precambrian high-temperature mafic intrusions , 2003 .

[58]  D. Cherniak,et al.  Diffusion in Zircon , 2003 .

[59]  V. Bennett Compositional Evolution of the Mantle , 2003 .

[60]  W. Griffin,et al.  Crustal Evolution in the SW Part of the Baltic Shield: the Hf Isotope Evidence , 2002 .

[61]  S. Wilde,et al.  A cool early Earth , 2002 .

[62]  W. Griffin,et al.  Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes , 2002 .

[63]  S. Wilde,et al.  Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ 18 O continental crust and oceans in the Early Archean , 2001 .

[64]  J. Blichert‐Toft,et al.  A hafnium isotope and trace element perspective on melting of the depleted mantle , 2001 .

[65]  K. Mezger,et al.  Calibration of the Lutetium-Hafnium Clock , 2001, Science.

[66]  T. M. Harrison,et al.  Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago , 2001, Nature.

[67]  Simon A. Wilde,et al.  Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago , 2001, Nature.

[68]  Y. Amelin,et al.  Early-middle archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains , 2000 .

[69]  S. Noble,et al.  Hf-Nd Element and Isotope Perspective on the Nature and Provenance of Mantle and Subduction Components in Western Pacific Arc-Basin Systems , 1999 .

[70]  M. Whitehouse,et al.  Age significance of U-Th-Pb zircon data from early Archaean rocks of west Greenland - a reassessment based on combined ion-microprobe and imaging studies , 1999 .

[71]  Y. Amelin,et al.  Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons , 1999, Nature.

[72]  F. Albarède,et al.  Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system , 1999 .

[73]  J. Blichert‐Toft,et al.  Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time , 1999 .

[74]  S. Bowring,et al.  Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada , 1999 .

[75]  M. Whitehouse,et al.  Detrital zircon ages from the Loch Maree Group, Lewisian Complex, NW Scotland: confirmation of a Palaeoproterozoic Laurentia—Fennoscandia connection , 1997 .

[76]  M. Whitehouse,et al.  Extreme Nd-isotope heterogeneity in the early Archaean — fact or fiction? Case histories from northern Canada and West Greenland , 1997 .

[77]  J. Vervoort,et al.  Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites , 1996 .

[78]  A. Nutman,et al.  Zirconology of the Meeberrie gneiss, Yilgarn Craton, Western Australia: an early Archaean migmatite , 1996 .

[79]  G. Gehrels,et al.  Constraints on early Earth differentiation from hafnium and neodymium isotopes , 1996, Nature.

[80]  S. Bowring,et al.  The Earth's early evolution. , 1995, Science.

[81]  A. Nutman,et al.  Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the Earth , 1993 .

[82]  F. Corfu,et al.  Genesis of the southern Abitibi greenstone belt, Superior Province, Canada: Evidence from zircon Hf isotope analyses using a single filament technique , 1992 .

[83]  S. Hart,et al.  The mantle sources of ocean ridges, islands and arcs: the Hf-isotope connection , 1991 .

[84]  P. J. Patchett,et al.  Implications for the evolution of continental crust from Hf isotope systematics of Archean detrital zircons , 1990 .

[85]  S. Goldstein,et al.  Use and abuse of crust-formation ages , 1987 .

[86]  W. Compston,et al.  Jack Hills, evidence of more very old detrital zircons in Western Australia , 1986, Nature.

[87]  W. Compston,et al.  Ion microprobe identification of 4,100–4,200 Myr-old terrestrial zircons , 1983, Nature.

[88]  P. J. Patchett,et al.  Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution , 1983 .

[89]  T. Krogh,et al.  Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique , 1982 .

[90]  G. Wasserburg,et al.  Sm-Nd and Rb-Sr Chronology of Continental Crust Formation , 1978, Science.