Glyphosate affects lignin content and amino acid production in glyphosate-resistant soybean

Farmers report that some glyphosate-resistant soybean varieties are visually injured by glyphosate. Glyphosate is the main herbicide that directly affects the synthesis of secondary compounds. In this work, we evaluated the effect of increasing rates of glyphosate on lignin and amino acid content, photosynthetic parameters and dry biomass in the early maturity group cultivar BRS 242 GR soybean. Plants were grown in half-strength complete nutrient solution and subjected to various rates of glyphosate either as a single or in sequential applications. All parameters evaluated were affected by increasing glyphosate rates. The effects were more pronounced as glyphosate rates increased, and were more intense with a single total application than sequential applications at lower rates.

[1]  D. R. Hoagland,et al.  The Water-Culture Method for Growing Plants Without Soil , 2018 .

[2]  D. Arnon COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. , 1949, Plant physiology.

[3]  C. R. Weber,et al.  Leaf Area, Solar Radiation Interception and Dry Matter Production by Soybeans 1 , 1965 .

[4]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[5]  N. Dyatlova,et al.  Organophosphorus complexones , 1975 .

[6]  S. Beale δ-Aminolevulinic Acid in Plants: Its Biosynthesis, Regulation, and Role in Plastid Development , 1978 .

[7]  S. Pihakaski,et al.  Effects of Glyphonosate on Ultrastructure and Photosynthesis of Pellia epiphylla , 1980 .

[8]  J. Coggins,et al.  Kinetics of 5‐enolpyruvylshikimate‐3‐phosphate synthase inhibition by glyphosate , 1983, FEBS letters.

[9]  R. Larossa,et al.  The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. , 1984, The Journal of biological chemistry.

[10]  E. Grossbard,et al.  The herbicide glyphosate. , 1985 .

[11]  F. Mencarelli,et al.  Ripening of mature-green tomato fruit slices , 1988 .

[12]  F. Mencarelli,et al.  Inhibition of Ethylene Synthesis and Action in Ripening Tomato Fruit by Ethanol Vapors , 1988, Journal of the American Society for Horticultural Science.

[13]  D. Shah,et al.  Amino acid biosynthesis inhibitors as herbicides. , 1988, Annual review of biochemistry.

[14]  M. Devine,et al.  Physiology of Herbicide Action , 1993 .

[15]  Ganesh M. Kishore,et al.  Development, identification, and characterization of a glyphosate-tolerant soybean line , 1995 .

[16]  John E. Franz,et al.  Glyphosate: A Unique Global Herbicide , 1997 .

[17]  K. Herrmann,et al.  Dynamics of the shikimate pathway in plants , 1997 .

[18]  J. García-Plazaola,et al.  Glyphosate effects on phenolic metabolism of nodulated soybean (Glycine max L. merr.). , 1999, Journal of agricultural and food chemistry.

[19]  P K Wong,et al.  Effects of 2,4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll-a synthesis of Scenedesmus quadricauda Berb 614. , 2000, Chemosphere.

[20]  A. Boudet Lignins and lignification: Selected issues , 2000 .

[21]  D. Bedgar,et al.  Induced phenylpropanoid metabolism during suberization and lignification: a comparative analysis. , 2000, Journal of plant physiology.

[22]  M. McCann,et al.  Macromolecular biophysics of the plant cell wall: Concepts and methodology , 2000 .

[23]  Robert M. Zablotowicz,et al.  Effect of Glyphosate on Growth, Chlorophyll, and Nodulation in Glyphosate-Resistant and Susceptible Soybean (Glycine max) Varieties , 2000 .

[24]  Inderjit Soil: Environmental effects on allelochemical activity : Allelopathy in Natural and Managed Ecosystems , 2001 .

[25]  C. A. King,et al.  Plant Growth and Nitrogenase Activity of Glyphosate-Tolerant Soybean in Response to Foliar Glyphosate Applications , 2001 .

[26]  L. Donaldson Lignification and lignin topochemistry - an ultrastructural view. , 2001, Phytochemistry.

[27]  M. Ferrarese,et al.  Protein-free lignin quantification in soybean (Glycine max) roots , 2002 .

[28]  Wolfgang G. Glasser,et al.  Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials , 2002 .

[29]  Andrew D. Richardson,et al.  An evaluation of noninvasive methods to estimate foliar chlorophyll content , 2002 .

[30]  Deborah Goffner,et al.  Lignins and lignocellulosics: a better control of synthesis for new and improved uses. , 2003, Trends in plant science.

[31]  W. Boerjan,et al.  Lignin biosynthesis. , 2003, Annual review of plant biology.

[32]  K. N. Reddy,et al.  Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. , 2003, Journal of agricultural and food chemistry.

[33]  E. Jong,et al.  Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN) , 2004 .

[34]  C. Arregui,et al.  Monitoring glyphosate residues in transgenic glyphosate-resistant soybean. , 2004, Pest management science.

[35]  K. N. Reddy,et al.  Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. , 2004, Journal of agricultural and food chemistry.

[36]  José Barbosa dos Santos,et al.  Características fisiológicas das culturas de soja e feijão e de três espécies de plantas daninhas , 2004 .

[37]  M. Andersen,et al.  Stomatal control and water use efficiency of soybean (Glycine max L. Merr.) during progressive soil drying , 2005 .

[38]  Cláudia F. B. Coutinho,et al.  Complexos metálicos com o herbicida glifosato: revisão , 2005 .

[39]  Siyuan Tan,et al.  Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops , 2006, Amino Acids.

[40]  F. C. Krzyzanowski,et al.  Lignin content and peroxidase activity in soybean seed coat susceptible and resistant to mechanical damage , 2005, Acta Physiologiae Plantarum.

[41]  R. Dixon,et al.  Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). , 2006, The Plant journal : for cell and molecular biology.

[42]  Caroline Mohammed,et al.  Chlorophyll and nitrogen determination for plantation-grown Eucalyptus nitens and E. globulus using a non-destructive meter , 2006 .

[43]  S. Shapiro,et al.  An analysis of variance test for normality ( complete samp 1 es ) t , 2007 .

[44]  K. N. Reddy,et al.  Nitrogenase activity, nitrogen content, and yield responses to glyphosate in glyphosate-resistant soybean , 2007 .

[45]  G. Johal,et al.  Glyphosate effects on diseases of plants , 2009 .

[46]  R. Marchiosi,et al.  Glyphosate-induced metabolic changes in susceptible and glyphosate-resistant soybean (Glycine max L.) roots , 2009 .

[47]  Rubem S. Oliveira,et al.  Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans , 2010, Plant and Soil.

[48]  S. Johal,et al.  lyphosate effects on diseases of plants , 2009 .

[49]  I. Cakmak,et al.  Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean , 2009 .

[50]  A. Cobb,et al.  The Inhibition of Amino Acid Biosynthesis , 2010 .