Tailoring quantum architectures to implementation style
暂无分享,去创建一个
[1] C. Monroe,et al. Architecture for a large-scale ion-trap quantum computer , 2002, Nature.
[2] A. Steane. Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.
[3] Frederic T. Chong,et al. Building quantum wires: the long and the short of it , 2003, 30th Annual International Symposium on Computer Architecture, 2003. Proceedings..
[4] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .
[5] John Kubiatowicz,et al. Interconnection Networks for Scalable Quantum Computers , 2006, 33rd International Symposium on Computer Architecture (ISCA'06).
[6] F. Schmidt-Kaler,et al. Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer , 2003, Nature.
[7] P. Seddighrad,et al. Qubits with electrons on liquid helium , 2003 .
[8] Andrew W. Cross,et al. A quantum logic array microarchitecture: scalable quantum data movement and computation , 2005, 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'05).
[9] Andrew Steane,et al. Active Stabilization, Quantum Computation, and Quantum State Synthesis , 1997 .
[10] Andrew M. Steane. The ion trap quantum information processor , 1996 .
[11] B. E. Kane. A silicon-based nuclear spin quantum computer , 1998, Nature.
[12] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[13] C. F. Roos,et al. Speed of ion-trap quantum-information processors , 2000, quant-ph/0003087.
[14] Daniel A. Lidar,et al. Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.
[15] Steane,et al. Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.
[16] A. Steane. Space, Time, Parallelism and Noise Requirements for Reliable Quantum Computing , 1997, quant-ph/9708021.
[17] Mark Oskin,et al. An Evaluation Framework and Instruction Set Architecture for Ion-Trap Based Quantum Micro-Architectures , 2005, ISCA 2005.
[18] J. Preskill. Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[19] T. N. Vijaykumar,et al. A program transformation and architecture support for quantum uncomputation , 2006, ASPLOS XII.
[20] Frederic T. Chong,et al. A Practical Architecture for Reliable Quantum Computers , 2002, Computer.
[21] S. A. Lyon,et al. Spin-based quantum computing using electrons on liquid helium , 2003, cond-mat/0301581.
[22] Measurement of the charge transfer efficiency of electrons clocked on superfluid helium , 2006, cond-mat/0602228.
[23] Frederic T. Chong,et al. Quantum Memory Hierarchies: Efficient Designs to Match Available Parallelism in Quantum Computing , 2006, 33rd International Symposium on Computer Architecture (ISCA'06).
[24] Mark Dykman,et al. Quantum Computing with Electrons Floating on Liquid Helium , 1999 .
[25] Andrew M. Steane. Efficient fault-tolerant quantum computing , 1999, Nature.
[26] Thomas G. Draper,et al. A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..
[27] A. J. Dahm,et al. Using Electrons on Liquid Helium for Quantum Computing , 2001 .
[28] Kent Wilken,et al. Optimal instruction scheduling using integer programming , 2000, PLDI.
[29] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .