Temperature dependence of clusters with attracting vortices in superconducting niobium studied by neutron scattering

We investigated the intermediate mixed state of a superconducting niobium sample using very small angle neutron scattering. We show that this state is stabilized through a sequence where a regular vortex lattice appears, which then coexists with vortex clusters before vanishing at low temperature. Vortices in clusters have a constant periodicity regardless of the applied field and exhibit a temperature dependence close to the one of the penetration depth. The clusters disappear in the high temperature limit. All the results agree with an explanation in terms of vortex attraction due to non-local effects and indicate a negligible role for pinning. Phase coexistence between the Abrikosov vortex lattice and vortex clusters is reported, showing the first-order nature of the boundary line.

[1]  S. Bending,et al.  Muon-spin rotation measurements of the vortex state in Sr2RuO4 : Type-1.5 superconductivity, vortex clustering, and a crossover from a triangular to a square vortex lattice , 2014, 1403.1767.

[2]  A. Sciarra,et al.  Nature of the Roberge-Weiss transition in N f = 2 QCD with Wilson fermions , 2014, 1402.0838.

[3]  E. Babaev,et al.  Vortex coalescence and type-1.5 superconductivity in Sr2RuO4 , 2012, 1207.6395.

[4]  E. Babaev,et al.  Type-1.5 Superconductivity in Multiband and Other Multicomponent Systems , 2012, 1206.6786.

[5]  P. Mathieu,et al.  Flux-lines lattice order and critical current studied by time-of-flight small-angle neutron scattering , 2012, 1204.5594.

[6]  E. Babaev,et al.  Type-1.5 superconductivity in multiband systems : Magnetic response, broken symmetries and microscopic theory - A brief overview , 2011, 1110.2744.

[7]  M. P. Das,et al.  Attractive Vortex Interaction and the Intermediate-Mixed State of Superconductors , 2010, 1007.1107.

[8]  S. Bhattacharya,et al.  Structure of the flux lines lattice in NbSe2: Equilibrium state and influence of the magnetic history , 2009, 0904.2523.

[9]  E. M. Forgan,et al.  Morphology of the superconducting vortex lattice in ultrapure niobium. , 2009, Physical review letters.

[10]  V. Moshchalkov,et al.  Type-1.5 superconductivity. , 2009, Physical review letters.

[11]  E. M. Forgan,et al.  Structure and degeneracy of vortex lattice domains in pure superconducting niobium: A small-angle neutron scattering study , 2009 .

[12]  S. Armes,et al.  Toward a new lower limit for the minimum scattering vector on the very small angle neutron scattering spectrometer at Laboratoire Leon Brillouin , 2008 .

[13]  Y. Fasano,et al.  Magnetic-decoration imaging of structural transitions induced in vortex matter , 2008 .

[14]  C. Goupil,et al.  Persistence of an ordered flux line lattice above the second peak in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} , 2007, 0706.1648.

[15]  S. Bhattacharya,et al.  Metastable states of a flux line lattice studied by transport and Small Angle Neutron Scattering , 2004, cond-mat/0411715.

[16]  D. Mailly,et al.  Observation of vortex coalescence in the anisotropic spin-triplet superconductor Sr2RuO4. , 2004, Physical review letters.

[17]  C. Goupil,et al.  Quantitative analysis of the critical current due to vortex pinning by surface corrugation , 2004, cond-mat/0404332.

[18]  K. Machida,et al.  Reentrant vortex lattice transformation in fourfold symmetric superconductors. , 2002, Physical review letters.

[19]  E. M. Forgan,et al.  Intrinsic behavior of flux lines in pure niobium near the upper critical field. , 2002, Physical review letters.

[20]  E. Brandt GEOMETRIC BARRIER AND CURRENT STRING IN TYPE-II SUPERCONDUCTORS OBTAINED FROM CONTINUUM ELECTRODYNAMICS , 1999 .

[21]  E. Brandt Precision Ginzburg-Landau Solution of Ideal Vortex Lattices for Any Induction and Symmetry , 1997 .

[22]  M. Botlo,et al.  Magnetization of low-κ superconductors I the phase transition at Hc1 , 1989 .

[23]  U. Klein Microscopic calculations on the vortex state of type II superconductors , 1987 .

[24]  N. Imfeld,et al.  Specific heat and magnetization of superconducting niobium in the mixed state , 1985 .

[25]  C. Koch,et al.  Effects of interstitial oxygen on the superconductivity of niobium , 1974 .

[26]  L. Kramer Interaction of vortices in type II superconductors and the behavior nearHc1 at arbitrary temperature , 1973 .

[27]  M. Leung Attractive interaction between vortices in type-II superconductors at arbitrary temperatures , 1973 .

[28]  H. Ullmaier,et al.  MAGNETIC BEHAVIOR OF TYPE-II SUPERCONDUCTORS WITH SMALL GINZBURG--LANDAU PARAMETERS. , 1973 .

[29]  D. Finnemore,et al.  Attractive interaction between vortices in Nb , 1972 .

[30]  H. Ullmaier,et al.  Neutron diffraction by vortex lattlices in superconducting Nb and Nb0.73Ta0.27 , 1971 .

[31]  K. Dichtel A nonlocal model of a single flux line , 1971 .

[32]  J. Halbritter On the penetration of the magnetic field into a superconductor , 1971 .

[33]  H. Büttner,et al.  The structure of single vortices in type II superconductors , 1969 .

[34]  U. Kraegeloh Flux line lattices in the intermediate state of superconductors with Ginzburg Landau parameters near 12 , 1969 .

[35]  D. K. Finnemore,et al.  Superconducting Properties of High-Purity Niobium , 1966 .

[36]  B. Mühlschlegel Die thermodynamischen Funktionen des Supraleiters , 1959 .

[37]  Alfred Brian Pippard,et al.  An experimental and theoretical study of the relation between magnetic field and current in a superconductor , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.