On general sampling schemes for Particle Markov chain Monte Carlo methods
暂无分享,去创建一个
Robert Kohn | Eduardo F. Mendes | Eduardo F. Mendes | Chris Carter | R. Kohn | C. Carter | Chris Carter
[1] F. Lindsten,et al. On the use of backward simulation in particle Markov chain Monte Carlo methods , 2011, 1110.2873.
[2] Eric Moulines,et al. Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..
[3] Tobias Rydén,et al. Rao-Blackwellization of Particle Markov Chain Monte Carlo Methods Using Forward Filtering Backward Sampling , 2011, IEEE Transactions on Signal Processing.
[4] J. Richard,et al. Efficient high-dimensional importance sampling , 2007 .
[5] Rong Chen,et al. New sequential Monte Carlo methods for nonlinear dynamic systems , 2005, Stat. Comput..
[6] R. Kohn,et al. Markov chain Monte Carlo in conditionally Gaussian state space models , 1996 .
[7] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[8] M. Netto,et al. A New Spline Algorithm for Non-Linear Filtering of Discrete Time Systems , 1978 .
[9] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[10] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .
[11] G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .
[12] Nando de Freitas,et al. The Unscented Particle Filter , 2000, NIPS.
[13] Michael A. West,et al. Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.
[14] C. Andrieu,et al. The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.
[15] S. Frühwirth-Schnatter. Data Augmentation and Dynamic Linear Models , 1994 .
[16] Ralph S. Silva,et al. On Some Properties of Markov Chain Monte Carlo Simulation Methods Based on the Particle Filter , 2012 .
[17] Nicholas G. Polson,et al. A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .
[18] Sylvia Frühwirth-Schnatter,et al. Finite Mixture and Markov Switching Models , 2006 .
[19] Geir Storvik,et al. Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..
[20] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[21] G. Wahba. Bayesian "Confidence Intervals" for the Cross-validated Smoothing Spline , 1983 .
[22] R. Kohn,et al. On Gibbs sampling for state space models , 1994 .
[23] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[24] C. Ansley,et al. The Signal Extraction Approach to Nonlinear Regression and Spline Smoothing , 1983 .
[25] C. Andrieu,et al. Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms , 2012, 1210.1484.
[26] Sumeetpal S. Singh,et al. On the Particle Gibbs Sampler , 2013 .
[27] Gareth O. Roberts,et al. Examples of Adaptive MCMC , 2009 .
[28] Galin L. Jones,et al. Fixed-Width Output Analysis for Markov Chain Monte Carlo , 2006, math/0601446.
[29] N. Shephard,et al. Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .
[30] R. Kohn,et al. Efficient Bayesian Inference for Dynamic Mixture Models , 2000 .
[31] J. Rosenthal,et al. General state space Markov chains and MCMC algorithms , 2004, math/0404033.
[32] J. Rosenthal,et al. Geometric Ergodicity and Hybrid Markov Chains , 1997 .
[33] Nicholas G. Polson,et al. Practical filtering with sequential parameter learning , 2008 .
[34] M. Pitt,et al. Likelihood analysis of non-Gaussian measurement time series , 1997 .
[35] Robert Kohn,et al. A structured state space approach to computing the likelihood of an ARIMA process and its derivatives , 1985 .
[36] A. Doucet,et al. Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.
[37] A. Doucet,et al. Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.
[38] P. Moral,et al. Sequential Monte Carlo for Bayesian Computation , 2006 .
[39] Robert Kohn,et al. Auxiliary particle ltering within adaptive Metropolis-Hastings sampling , 2010, 1006.1914.