Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model

[1]  S. Demissew,et al.  Resilience potential of the Ethiopian coffee sector under climate change , 2017, Nature Plants.

[2]  G. Maire,et al.  Importance of deep water uptake in tropical eucalypt forest , 2017 .

[3]  A. Nicotra,et al.  The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions? , 2017, Plant, cell & environment.

[4]  O. Roupsard,et al.  Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age. , 2016, Annals of botany.

[5]  Guillaume Marie,et al.  Influence of vegetation spatial structure on growth and water fluxes of a mixed forest: Results from the NOTG 3D model , 2016 .

[6]  Brian N. Bailey,et al.  A new three-dimensional energy balance model for complex plant canopy geometries: Model development and improved validation strategies , 2016 .

[7]  Morten Andreas Dahl Larsen,et al.  Calibration of a distributed hydrology and land surface model using energy flux measurements , 2016 .

[8]  Jules Bayala,et al.  Field-scale modeling of tree-crop interactions: Challenges and development needs , 2016 .

[9]  G. Maire,et al.  Sensitivity and uncertainty analysis of the carbon and water fluxes at the tree scale in Eucalyptus plantations using a metamodeling approach , 2016 .

[10]  F. Damatta,et al.  Long‐term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra‐optimal temperatures in tropical Coffea arabica and C. canephora species , 2016, Global change biology.

[11]  Timothy E. Link,et al.  Modeling temperature and humidity profiles within forest canopies , 2015 .

[12]  Hans Pretzsch,et al.  Representation of species mixing in forest growth models. A review and perspective , 2015 .

[13]  J. Bayala,et al.  Advances in knowledge of processes in soil–tree–crop interactions in parkland systems in the West African Sahel: A review , 2015 .

[14]  R. Oren,et al.  The space-time continuum: the effects of elevated CO2 and temperature on trees and the importance of scaling. , 2015, Plant, cell & environment.

[15]  Bruno Rapidel,et al.  Intraspecific leaf economic trait variation partially explains coffee performance across agroforestry management regimes , 2015 .

[16]  P. Läderach,et al.  A bitter cup: climate change profile of global production of Arabica and Robusta coffee , 2015, Climatic Change.

[17]  Guillaume Marie,et al.  Extending the use of ecological models without sacrificing details: a generic and parsimonious meta‐modelling approach , 2014 .

[18]  Olivier Roupsard,et al.  Leaf area index as an indicator of ecosystem services and management practices: An application for coffee agroforestry , 2014 .

[19]  A. Huth,et al.  Of climate and its resulting tree growth: Simulating the productivity of temperate forests , 2014 .

[20]  J. Widlowski,et al.  Abstract tree crowns in 3D radiative transfer models: Impact on simulated open-canopy reflectances , 2014 .

[21]  J. Monteith,et al.  Principles of Environmental Physics , 2014 .

[22]  Naftali Lazarovitch,et al.  A review of approaches for evapotranspiration partitioning , 2014 .

[23]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[24]  P. Brancalion,et al.  Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations , 2013 .

[25]  G. Kiely,et al.  A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape-scale heterogeneity , 2013 .

[26]  Hans Peter Schmid,et al.  A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements , 2013 .

[27]  G. Maire,et al.  Carbon, water and energy balances of an Eucalyptus grandis plantation in Brazil: effects of clearcut and stand age , 2013 .

[28]  N. Ramankutty,et al.  Recent patterns of crop yield growth and stagnation , 2012, Nature Communications.

[29]  L. Bruijnzeel,et al.  The water and energy exchange of a shaded coffee plantation in the lower montane cloud forest zone of central Veracruz, Mexico , 2012 .

[30]  Aaron P. Davis,et al.  The Impact of Climate Change on Indigenous Arabica Coffee (Coffea arabica): Predicting Future Trends and Identifying Priorities , 2012, PloS one.

[31]  B. Medlyn,et al.  MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO 2 ] × drought interactions , 2012 .

[32]  Virginie Moreaux Observation et modélisation des échanges d’énergie et de masse de jeunes peuplements forestiers du Sud-Ouest de la France , 2012 .

[33]  Susan L. Ustin,et al.  Modeling energy and carbon fluxes in a heterogeneous oak woodland: A three-dimensional approach , 2012 .

[34]  Renu Singh,et al.  Dynamics of tree-crop interface in relation to their influence on microclimatic changes - a review. , 2012 .

[35]  C. Staver,et al.  Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America , 2011, Agroforestry Systems.

[36]  David Gouache,et al.  Why are wheat yields stagnating in Europe? A comprehensive data analysis for France , 2010 .

[37]  M. Voltz,et al.  Modelling the hydrological behaviour of a coffee agroforestry basin in Costa Rica , 2010 .

[38]  Quantifying the uncertainties of transpiration calculations with the Penman-Monteith equation under different climate and optimum water supply conditions , 2009 .

[39]  Georg Wohlfahrt,et al.  Open-path vs. closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: A long-term perspective , 2009 .

[40]  V. Maquère,et al.  Dynamics of mineral elements under a fast-growing eucalyptus plantation in Brazil. Implications for soil sustainability. , 2008 .

[41]  J. Paruelo,et al.  How to evaluate models : Observed vs. predicted or predicted vs. observed? , 2008 .

[42]  Thierry Fourcaud,et al.  A numerical model of tree aerodynamic response to a turbulent airflow , 2008 .

[43]  V. Haverd,et al.  Air and biomass heat storage fluxes in a forest canopy: Calculation within a soil vegetation atmosphere transfer model , 2007 .

[44]  H. Keith,et al.  Linking leaf and tree water use with an individual-tree model. , 2007, Tree physiology.

[45]  T. McMahon,et al.  Updated world map of the Köppen-Geiger climate classification , 2007 .

[46]  Günther Fischer,et al.  Climate change impacts on irrigation water requirements: Effects of mitigation, 1990-2080 , 2007 .

[47]  Jeffrey G. Arnold,et al.  Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations , 2007 .

[48]  Philip Lewis,et al.  3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains , 2006 .

[49]  A. Granier,et al.  Modelling carbon and water cycles in a beech forest: Part I: Model description and uncertainty analysis on modelled NEE , 2005 .

[50]  Rupert Seidl,et al.  Evaluating the accuracy and generality of a hybrid patch model. , 2005, Tree physiology.

[51]  K. Wilson,et al.  OAK FOREST CARBON AND WATER SIMULATIONS: MODEL INTERCOMPARISONS AND EVALUATIONS AGAINST INDEPENDENT DATA , 2004 .

[52]  Ray Leuning,et al.  A coupled model of stomatal conductance, photosynthesis and transpiration , 2003 .

[53]  J. Laclau,et al.  Nutrient cycling in a clonal stand of Eucalyptus and an adjacent savanna ecosystem in Congo : 1. Chemical composition of rainfall, throughfall and stemflow solutions , 2003 .

[54]  Jean Dauzat,et al.  Simulation of leaf transpiration and sap flow in virtual plants: model description and application to a coffee plantation in Costa Rica. , 2001 .

[55]  M. G. Ryan,et al.  Evaluating different soil and plant hydraulic constraints on tree function using a model and sap flow data from ponderosa pine , 2001 .

[56]  D. Straeten,et al.  Seeing is believing: imaging techniques to monitor plant health. , 2001, Biochimica et biophysica acta.

[57]  Hervé Sinoquet,et al.  Treegrass: a 3D, process-based model for simulating plant interactions in tree-grass ecosystems , 2000 .

[58]  Rattan Lal,et al.  Soil Erosion Impact on Agronomic Productivity and Environment Quality , 1998 .

[59]  Barry Gardiner,et al.  A mathematical model to describe the dynamic response of a spruce tree to the wind , 1998, Trees.

[60]  E. Schulze,et al.  Leaf nitrogen, photosynthesis, conductance and transpiration : scaling from leaves to canopies , 1995 .

[61]  Paul G. Jarvis,et al.  Description and validation of an array model - MAESTRO. , 1990 .

[62]  A. V. D. Griend,et al.  Water and surface energy balance model with a multilayer canopy representation for remote sensing purposes , 1989 .

[63]  John L. Monteith,et al.  A four-layer model for the heat budget of homogeneous land surfaces , 1988 .

[64]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[65]  Keith Beven,et al.  A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates , 1979 .

[66]  W. Brutsaert On a derivable formula for long-wave radiation from clear skies , 1975 .

[67]  K. Schurer,et al.  LEAF TEMPERATURE MEASUREMENT I. THERMOCOUPLES , 1973 .

[68]  P. Miller Sampling to Estimate Mean Leaf Temperatures and Transpiration Rates in Vegetation Canopies , 1971 .

[69]  A. Rutter,et al.  A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine , 1971 .

[70]  P. Miller Leaf temperatures, leaf orientation and energy exchange in Quaking Aspen (Populus tremuloides) and Gambell's Oak (Quercus gambellii [gambelii]) in central Colorado , 1967 .