InFrame++: Achieve Simultaneous Screen-Human Viewing and Hidden Screen-Camera Communication

Recent efforts in visible light communication over screen-camera links have exploited the display for data communication. Such practices, albeit convenient, have led to contention between space allocated for users and content reserved for devices, in addition to their visual anti-aesthetics and distractedness. In this paper, we propose INFRAME++, a system that enables concurrent, dual-mode, full-frame communication for both users and devices. INFRAME++ leverages the spatial-temporal flicker-fusion property of human vision system and the fast frame rate of modern display. It multiplexes data onto full-frame video contents through novel complementary frame composition, hierarchical frame structure, and CDMA-like modulation. It thus ensures opportunistic and unobtrusive screen-camera data communication without affecting the primary video-viewing experience for human users. Our prototype and experiments have confirmed its effectiveness of delivering data to devices in its visual communication with imperceptible video artifacts for viewers. INFRAME++ is able to achieve 150-240 kbps at 120FPS over a 24? LCD monitor with one data frame per 12 display frames. It supports up to 360kbps while data:video is 1:6.

[1]  Toby Sharp,et al.  An Implementation of Key-Based Digital Signal Steganography , 2001, Information Hiding.

[2]  A. Wilkins,et al.  Flicker can be perceived during saccades at frequencies in excess of 1 kHz , 2013 .

[3]  V. Ramachandran,et al.  Segmentation Analysis for Effective Usage of Network Resources in Video Streaming , 2007, International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007).

[4]  Qiaoyan Wen,et al.  A steganographic method for digital images with four-pixel differencing and modified LSB substitution , 2011, J. Vis. Commun. Image Represent..

[5]  Yang Xiaohua,et al.  Forward Error Correction , 2012, 2012 Fourth International Conference on Computational and Information Sciences.

[6]  Guobin Shen,et al.  InFrame: Multiflexing Full-Frame Visible Communication Channel for Humans and Devices , 2014, HotNets.

[7]  Jiwu Huang,et al.  A New Approach to Estimating Hidden Message Length in Stochastic Modulation Steganography , 2005, IWDW.

[8]  Anthony Rowe,et al.  Visual light landmarks for mobile devices , 2014, IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks.

[9]  M. Hwang,et al.  Image steganographic scheme based on pixel-value differencing and LSB replacement methods , 2005 .

[10]  Ramesh Raskar,et al.  VRCodes: Unobtrusive and active visual codes for interaction by exploiting rolling shutter , 2012, 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[11]  Kaigui Bian,et al.  Strata: layered coding for scalable visual communication , 2014, MobiCom.

[12]  Chunming Hu,et al.  Enhancing reliability to boost the throughput over screen-camera links , 2014, MobiCom.

[13]  D. G. Green,et al.  Sinusoidal flicker characteristics of the color-sensitive mechanisms of the eye. , 1969, Vision research.

[14]  David A. Atchison,et al.  Optics of the Human Eye , 2023 .

[15]  Markus G. Kuhn,et al.  Information hiding-a survey , 1999, Proc. IEEE.

[16]  Dina Katabi,et al.  PixNet: interference-free wireless links using LCD-camera pairs , 2010, MobiCom.

[17]  Wayne A. Hershberger,et al.  The Phantom Array: A Perisaccadic Illusion of Visual Direction , 1998 .

[18]  I. M. L. C. Vogels,et al.  Effect of Eye Movements on Perception of Temporally Modulated Light , 2012 .

[19]  R. Kavitha,et al.  Lossless Steganography on AVI File Using Swapping Algorithm , 2007, International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007).

[20]  Guoliang Xing,et al.  COBRA: color barcode streaming for smartphone systems , 2012, MobiSys '12.

[21]  Wenjun Hu,et al.  LightSync: unsynchronized visual communication over screen-camera links , 2013, MobiCom.

[22]  G S Brindley,et al.  The flicker fusion frequency of the blue‐sensitive mechanism of colour vision , 1966, The Journal of physiology.

[23]  David A. Atchison,et al.  Chapter 20 – The aging eye , 2000 .

[24]  Tianxing Li,et al.  HiLight: Hiding Bits in Pixel Translucency Changes , 2015, MOCO.

[25]  Stephen B. Wicker,et al.  Reed-Solomon Codes and Their Applications , 1999 .

[26]  Cisco Visual Networking Index: Forecast and Methodology 2016-2021.(2017) http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual- networking-index-vni/complete-white-paper-c11-481360.html. High Efficiency Video Coding (HEVC) Algorithms and Architectures https://jvet.hhi.fraunhofer. , 2017 .

[27]  Jessica J. Fridrich,et al.  Digital image steganography using stochastic modulation , 2003, IS&T/SPIE Electronic Imaging.

[28]  Kevin Curran,et al.  Digital image steganography: Survey and analysis of current methods , 2010, Signal Process..

[29]  E. Simonson,et al.  Flicker fusion frequency; background and applications. , 1952, Physiological reviews.

[30]  Ashwin Ashok,et al.  Dynamic and invisible messaging for visual MIMO , 2012, 2012 IEEE Workshop on the Applications of Computer Vision (WACV).

[31]  O. Braddick Visual psychophysics , 1997, Current Biology.

[32]  R. Balaji,et al.  Secure data transmission using video Steganography , 2011, 2011 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY.

[33]  P. O. Bishop,et al.  Spatial vision. , 1971, Annual review of psychology.

[34]  Ching-Hsiang Chu,et al.  IVC: Imperceptible Video Communication , 2014 .

[35]  Yanqun Zhang,et al.  Digital Watermarking Technology: A Review , 2009, 2009 ETP International Conference on Future Computer and Communication.