Direct determination of exciton couplings from subsystem time-dependent density-functional theory within the Tamm-Dancoff approximation.

In subsystem time-dependent density functional theory (TDDFT) [J. Neugebauer, J. Chem. Phys. 126, 134116 (2007)] localized excitations are used to calculate delocalized excitations in large chromophore aggregates. We have extended this formalism to allow for the Tamm-Dancoff approximation (TDA). The resulting response equations have a form similar to a perturbative configuration interaction singles (CIS) approach. Thus, the inter-subsystem matrix elements in subsystem TDA can, in contrast to the full subsystem-TDDFT case, directly be interpreted as exciton coupling matrix elements. Here, we present the underlying theory of subsystem TDDFT within the TDA as well as first applications. Since for some classes of pigments, such as linear polyenes and carotenoids, TDA has been reported to perform better than full TDDFT, we also report applications of this formalism to exciton couplings in dimers of such pigments and in mixed bacteriochlorophyll-carotenoid systems. The improved description of the exciton couplings can be traced back to a more balanced description of the involved local excitations.

[1]  William W. Parson,et al.  Modern Optical Spectroscopy , 2015, Springer Berlin Heidelberg.

[2]  D. Tozer,et al.  Overcoming low orbital overlap and triplet instability problems in TDDFT. , 2012, The journal of physical chemistry. A.

[3]  T. Polívka,et al.  Role of carotenoids in light-harvesting processes in an antenna protein from the chromophyte Xanthonema debile. , 2012, The journal of physical chemistry. B.

[4]  Christoph R. Jacob,et al.  Quantum-chemical embedding methods for treating local electronic excitations in complex chemical systems , 2012 .

[5]  Johannes Neugebauer,et al.  Quantum chemical description of absorption properties and excited-state processes in photosynthetic systems. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  Daniel Escudero,et al.  Progress and challenges in the calculation of electronic excited states. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[7]  Neepa T. Maitra,et al.  Introduction to TDDFT , 2012 .

[8]  D. Tozer,et al.  Influence of Triplet Instabilities in TDDFT. , 2011, Journal of chemical theory and computation.

[9]  T. Moore,et al.  On the role of excitonic interactions in carotenoid–phthalocyanine dyads and implications for photosynthetic regulation , 2011, Photosynthesis Research.

[10]  Caroline König,et al.  First-principles calculation of electronic spectra of light-harvesting complex II. , 2011, Physical chemistry chemical physics : PCCP.

[11]  F. Buda,et al.  Theoretical spectroscopy of astaxanthin in crustacyanin proteins: absorption, circular dichroism, and nuclear magnetic resonance. , 2011, The journal of physical chemistry. B.

[12]  H. Ågren,et al.  Spin-flip time dependent density functional theory applied to excited states with single, double, or mixed electron excitation character. , 2010, The Journal of chemical physics.

[13]  A. Dreuw,et al.  Quantum chemical excited state calculations on pigment–protein complexes require thorough geometry re-optimization of experimental crystal structures , 2010 .

[14]  Johannes Neugebauer,et al.  Subsystem-based theoretical spectroscopy of biomolecules and biomolecular assemblies. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[15]  S. Hayashi,et al.  Electronic coulombic coupling of excitation-energy transfer in xanthorhodopsin. , 2009, Journal of the American Chemical Society.

[16]  T. Renger Theory of excitation energy transfer: from structure to function , 2009, Photosynthesis Research.

[17]  Tomáš Polívka,et al.  Dark excited states of carotenoids: Consensus and controversy , 2009 .

[18]  A. Dreuw,et al.  Excitation energy transfer and carotenoid radical cation formation in light harvesting complexes - a theoretical perspective. , 2009, Biochimica et biophysica acta.

[19]  B. Durbeej,et al.  Excited-state modeling of the astaxanthin dimer predicts a minor contribution from exciton coupling to the bathochromic shift in crustacyanin. , 2009, The journal of physical chemistry. B.

[20]  Stefan Grimme,et al.  Parallel multireference configuration interaction calculations on mini-beta-carotenes and beta-carotene. , 2009, The Journal of chemical physics.

[21]  M. E. Casida,et al.  Mixed time-dependent density-functional theory/classical trajectory surface hopping study of oxirane photochemistry. , 2008, The Journal of chemical physics.

[22]  C. Marian,et al.  Performance of the Density Functional Theory/Multireference Configuration Interaction Method on Electronic Excitation of Extended π-Systems. , 2008, Journal of chemical theory and computation.

[23]  Christoph R. Jacob,et al.  A flexible implementation of frozen‐density embedding for use in multilevel simulations , 2008, J. Comput. Chem..

[24]  A. Masunov,et al.  Double excitations and state-to-state transition dipoles in π-π* excited singlet states of linear polyenes : Time-dependent density-functional theory versus multiconfigurational methods , 2008 .

[25]  Yi-Lei Wang,et al.  Improving the TDDFT calculation of low-lying excited states for polycyclic aromatic hydrocarbons using the Tamm–Dancoff approximation , 2008 .

[26]  F. Neese,et al.  Double-hybrid density functional theory for excited electronic states of molecules. , 2007, The Journal of chemical physics.

[27]  M. E. Casida,et al.  Troubleshooting time-dependent density-functional theory for photochemical applications: oxirane. , 2007, The Journal of chemical physics.

[28]  Johannes Neugebauer,et al.  Couplings between electronic transitions in a subsystem formulation of time-dependent density functional theory. , 2007, The Journal of chemical physics.

[29]  Andreas Dreuw,et al.  How much double excitation character do the lowest excited states of linear polyenes have , 2006 .

[30]  J. Linnanto,et al.  Quantum chemical simulation of excited states of chlorophylls, bacteriochlorophylls and their complexes. , 2006, Physical chemistry chemical physics : PCCP.

[31]  T. Wesołowski,et al.  Orbital-free embedding applied to the calculation of induced dipole moments in CO2...X (X = He, Ne, Ar, Kr, Xe, Hg) van der Waals complexes. , 2005, The Journal of chemical physics.

[32]  Andreas Dreuw,et al.  Single-reference ab initio methods for the calculation of excited states of large molecules. , 2005, Chemical reviews.

[33]  Johannes Neugebauer,et al.  An explicit quantum chemical method for modeling large solvation shells applied to aminocoumarin C151. , 2005, The journal of physical chemistry. A.

[34]  M. E. Casida,et al.  Propagator corrections to adiabatic time-dependent density-functional theory linear response theory. , 2005, The Journal of chemical physics.

[35]  F. Buda,et al.  Spectroscopy and quantum chemical modeling reveal a predominant contribution of excitonic interactions to the bathochromic shift in alpha-crustacyanin, the blue carotenoprotein in the carapace of the lobster Homarus gammarus. , 2005, Journal of the American Chemical Society.

[36]  Carotenoid-chlorophyll complexes: Ready-to-harvest , 2005 .

[37]  Fan Zhang,et al.  A dressed TDDFT treatment of the 21Ag states of butadiene and hexatriene , 2004 .

[38]  Kieron Burke,et al.  Double excitations within time-dependent density functional theory linear response. , 2004, The Journal of chemical physics.

[39]  M. Head‐Gordon,et al.  Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. , 2004, Journal of the American Chemical Society.

[40]  V. Sundström,et al.  Ultrafast dynamics of carotenoid excited States-from solution to natural and artificial systems. , 2004, Chemical reviews.

[41]  Tomasz Adam Wesolowski,et al.  Generalization of the Kohn–Sham equations with constrained electron density formalism and its time‐dependent response theory formulation , 2004 .

[42]  K. Schulten,et al.  Efficient light harvesting through carotenoids , 2004, Photosynthesis Research.

[43]  M. Head‐Gordon,et al.  Chlorophyll fluorescence quenching by xanthophylls , 2003 .

[44]  M. Head‐Gordon,et al.  Charge-Transfer State as a Possible Signature of a Zeaxanthin-Chlorophyll Dimer in the Non-photochemical Quenching Process in Green Plants , 2003 .

[45]  N. Isaacs,et al.  The structure and thermal motion of the B800-850 LH2 complex from Rps.acidophila at 2.0A resolution and 100K: new structural features and functionally relevant motions. , 2003, Journal of molecular biology.

[46]  Anna I. Krylov,et al.  The spin–flip approach within time-dependent density functional theory: Theory and applications to diradicals , 2003 .

[47]  V. Sundström,et al.  The carotenoid S-1 state in LH2 complexes from purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas acidophila: S-1 energies, dynamics, and carotenoid radical formation , 2002 .

[48]  G. Fleming,et al.  The Role of the S1 State of Carotenoids in Photosynthetic Energy Transfer: The Light-Harvesting Complex II of Purple Bacteria , 2001 .

[49]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[50]  M. Head‐Gordon,et al.  Excitation Energies from Time-Dependent Density Functional Theory for Linear Polyene Oligomers: Butadiene to Decapentaene , 2001 .

[51]  F. Gadéa,et al.  Charge-transfer correction for improved time-dependent local density approximation excited-state potential energy curves: Analysis within the two-level model with illustration for H2 and LiH , 2000 .

[52]  G. Fleming,et al.  Femtosecond dynamics of the forbidden carotenoid S1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Christof Hättig,et al.  CC2 excitation energy calculations on large molecules using the resolution of the identity approximation , 2000 .

[54]  T. Inaba,et al.  Mechanism of the Carotenoid-to-Bacteriochlorophyll Energy Transfer via the S1 State in the LH2 Complexes from Purple Bacteria , 2000 .

[55]  D. Sundholm Comparison of the electronic excitation spectra of chlorophyll a and pheophytin a calculated at density functional theory level , 2000 .

[56]  Graham R. Fleming,et al.  On the Mechanism of Light Harvesting in Photosynthetic Purple Bacteria: B800 to B850 Energy Transfer , 2000 .

[57]  Evert Jan Baerends,et al.  Molecular calculations of excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials , 2000 .

[58]  E. Baerends,et al.  Ensuring proper short-range and asymptotic behavior of the exchange-correlation Kohn-Sham potential by modeling with a statistical average of different orbital model potentials , 2000 .

[59]  M. Head‐Gordon,et al.  Configuration interaction singles, time-dependent Hartree-Fock, and time-dependent density functional theory for the electronic excited states of extended systems , 1999 .

[60]  Benjamin T. Miller,et al.  A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm–Dancoff approximation , 1999 .

[61]  S. Grimme,et al.  A COMBINATION OF KOHN-SHAM DENSITY FUNCTIONAL THEORY AND MULTI-REFERENCE CONFIGURATION INTERACTION METHODS , 1999 .

[62]  E. J. Baerends,et al.  Approximation of the exchange-correlation Kohn-Sham potential with a statistical average of different orbital model potentials. , 1999 .

[63]  Klaus Schulten,et al.  Energy transfer between carotenoids and bacteriochlorophylls in light-harvesting complex II of purple bacteria , 1999 .

[64]  G. Fleming,et al.  Calculation of Couplings and Energy-Transfer Pathways between the Pigments of LH2 by the ab Initio Transition Density Cube Method , 1998 .

[65]  Graham R. Fleming,et al.  Electronic Excitation Transfer from Carotenoid to Bacteriochlorophyll in the Purple Bacterium Rhodopseudomonas acidophila , 1998 .

[66]  Kimihiko Hirao,et al.  Theoretical study of the π→π* excited states of linear polyenes: The energy gap between 11Bu+ and 21Ag− states and their character , 1998 .

[67]  G. Fleming,et al.  Electronic Interactions in Photosynthetic Light-Harvesting Complexes: The Role of Carotenoids , 1997 .

[68]  T. Wesołowski Density Functional Theory with approximate kinetic energy functionals applied to hydrogen bonds , 1997 .

[69]  Jacques Weber,et al.  Accuracy of approximate kinetic energy functionals in the model of Kohn–Sham equations with constrained electron density: The FH⋅⋅⋅NCH complex as a test case , 1996 .

[70]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[71]  Stefan Grimme,et al.  Density functional calculations with configuration interaction for the excited states of molecules , 1996 .

[72]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[73]  Jacques Weber,et al.  Kohn-Sham equations with constrained electron density: an iterative evaluation of the ground-state electron density of interacting molecules , 1996 .

[74]  R. Cogdell Carotenoids in photosynthesis , 1978, Photochemistry and photobiology.

[75]  M. E. Casida Time-Dependent Density Functional Response Theory for Molecules , 1995 .

[76]  N. W. Isaacs,et al.  Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria , 1995, Nature.

[77]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[78]  B. Roos,et al.  Theoretical study of the electronic spectrum of all-trans-1,3,5,7-octatetraene , 1993 .

[79]  A. Warshel,et al.  Frozen density functional approach for ab initio calculations of solvated molecules , 1993 .

[80]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[81]  Cortona,et al.  Self-consistently determined properties of solids without band-structure calculations. , 1991, Physical review. B, Condensed matter.

[82]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[83]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[84]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[85]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[86]  Klaus Schulten,et al.  Correlation effects in the spectra of polyenes , 1976 .

[87]  Klaus Schulten,et al.  On the origin of a low-lying forbidden transition in polyenes and related molecules , 1972 .

[88]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[89]  F. Reiche,et al.  Über die Zahl der Dispersionselektronen, die einem stationären Zustand zugeordnet sind , 1925 .

[90]  W. Kuhn Über die Gesamtstärke der von einem Zustande ausgehenden Absorptionslinien , 1925 .