A risk-unbiased bound for information fusion with nuisance parameters

Multi-sensor information fusion usually involves existence of nuisance parameters, such as the estimation error covariance at each node of the network. In this paper, we address the question of how accurately one can estimate a parameter of interest using a network of multi-sensors, subject to unknown noise intensity at the sensors. The commonly used Cramér-Rao bound (CRB) is restricted to mean-unbiased estimation of all model parameters with no distinction of their character and leads to optimistic and unachievable performance analysis. Instead, a Cramér-Rao-type bound on the mean-squared-error (MSE) is derived for the considered scenario, where the noise variances are considered as nuisance parameters. The proposed bound is based on the risk-unbiased CRB (RUCRB), which assumes risk-unbiased estimation of the parameters of interest. Simulations show that the RUCRB provides a tight and achievable performance analysis for the MSE of conventional estimators.

[1]  T. Nayak,et al.  The concept of risk unbiasedness in statistical prediction , 2010 .

[2]  Eric Chaumette,et al.  New Results on Deterministic Cramér–Rao Bounds for Real and Complex Parameters , 2012, IEEE Transactions on Signal Processing.

[3]  Joseph Tabrikian,et al.  Non-Bayesian Periodic Cramér-Rao Bound , 2013, IEEE Transactions on Signal Processing.

[4]  Joseph Tabrikian,et al.  Cyclic Barankin-Type Bounds for Non-Bayesian Periodic Parameter Estimation , 2014, IEEE Transactions on Signal Processing.

[5]  Ashutosh Kumar Singh,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2010 .

[6]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[7]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[8]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[9]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .

[10]  Eric Chaumette,et al.  On the influence of detection tests on deterministic parameters estimation , 2006, 2006 14th European Signal Processing Conference.

[11]  Fulvio Gini Estimation strategies in the presence of nuisance parameters , 1996, Signal Process..

[12]  Jürgen Beyerer Is it useful to know a nuisance parameter? , 1998, Signal Process..

[13]  Alfred O. Hero,et al.  Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.

[14]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[15]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[16]  V. K. Jones,et al.  Channel estimation for wireless OFDM systems , 1998, IEEE GLOBECOM 1998 (Cat. NO. 98CH36250).

[17]  Joseph Tabrikian,et al.  Bayesian Estimation in the Presence of Deterministic Nuisance Parameters—Part II: Estimation Methods , 2015, IEEE Transactions on Signal Processing.

[18]  Yushan Xiao,et al.  Linex Unbiasedness in a Prediction Problem , 2000 .

[19]  Benjamin Friedlander,et al.  Computation of the exact information matrix of Gaussian time series with stationary random components , 1985, 1985 24th IEEE Conference on Decision and Control.

[20]  Joseph Tabrikian,et al.  Periodic CRB for non-Bayesian parameter estimation , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[21]  Joseph Tabrikian,et al.  Bayesian Estimation in the Presence of Deterministic Nuisance Parameters—Part I: Performance Bounds , 2015, IEEE Transactions on Signal Processing.

[22]  Arthur Albert,et al.  Regression and the Moore-Penrose Pseudoinverse , 2012 .

[23]  E. Lehmann A General Concept of Unbiasedness , 1951 .

[24]  Joseph Tabrikian,et al.  Bayesian cramér-rao type bound for risk-unbiased estimation with deterministic nuisance parameters , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[25]  Don H. Johnson,et al.  Statistical Signal Processing , 2009, Encyclopedia of Biometrics.

[26]  Joseph Tabrikian,et al.  Performance bounds for constrained parameter estimation , 2012, 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[27]  J. Magnus The moments of products of quadratic forms in normal variables , 1978 .