Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD

[1]  M. Molloy,et al.  Pathogenic mutation in the ALS/FTD gene, CCNF, causes elevated Lys48-linked ubiquitylation and defective autophagy , 2019, Cellular and Molecular Life Sciences.

[2]  Markus Glatzel,et al.  The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. , 2017, Immunity.

[3]  M. Mesulam,et al.  TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics , 2017, Neuron.

[4]  Nick C Fox,et al.  Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease , 2017, Nature Genetics.

[5]  O. Hardiman,et al.  Edaravone: a new treatment for ALS on the horizon? , 2017, The Lancet Neurology.

[6]  Y. Itoyama,et al.  Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial , 2017, The Lancet Neurology.

[7]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[8]  P. Andersen,et al.  Association of Mutations in TBK1 With Sporadic and Familial Amyotrophic Lateral Sclerosis and Frontotemporal Dementia , 2017, JAMA neurology.

[9]  Nicole R. Zürcher,et al.  Glial activation colocalizes with structural abnormalities in amyotrophic lateral sclerosis , 2016, Neurology.

[10]  Diana M. Mitrea,et al.  C9orf72 Dipeptide Repeats Impair the Assembly, Dynamics, and Function of Membrane-Less Organelles , 2016, Cell.

[11]  L. Petrucelli,et al.  Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons , 2016, Neuron.

[12]  M. Mann,et al.  C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons , 2016, Nature Neuroscience.

[13]  C. Mcdermott,et al.  Supportive and symptomatic management of amyotrophic lateral sclerosis , 2016, Nature Reviews Neurology.

[14]  Junying Yuan,et al.  RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS , 2016, Science.

[15]  Ying Sun,et al.  Association Between Progranulin and Gaucher Disease , 2016, EBioMedicine.

[16]  Steffen Jung,et al.  Age-related myelin degradation burdens the clearance function of microglia during aging , 2016, Nature Neuroscience.

[17]  L. Hayward,et al.  ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics , 2016, Acta Neuropathologica.

[18]  F. Peri,et al.  Developmental Apoptosis Mediates Entry and Positioning of Microglia in the Zebrafish Brain. , 2016, Cell reports.

[19]  Annelot M. Dekker,et al.  NEK1 variants confer susceptibility to amyotrophic lateral sclerosis , 2016, Nature Genetics.

[20]  Annelot M. Dekker,et al.  Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis , 2017 .

[21]  M. Oulad-Abdelghani,et al.  Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin‐2 to induce motor neuron dysfunction and cell death , 2016, The EMBO journal.

[22]  E. Holzbaur,et al.  Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy , 2016, Proceedings of the National Academy of Sciences.

[23]  M. Smolka,et al.  The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway , 2016, Acta neuropathologica communications.

[24]  E. Beghi,et al.  Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis , 2016, International journal of epidemiology.

[25]  Ben A. Barres,et al.  Complement and microglia mediate early synapse loss in Alzheimer mouse models , 2016, Science.

[26]  Michelle K. Cahill,et al.  Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation , 2016, Cell.

[27]  D. Borchelt,et al.  C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD , 2016, Neuron.

[28]  T. Wieland,et al.  NEK1 mutations in familial amyotrophic lateral sclerosis. , 2016, Brain : a journal of neurology.

[29]  Benjamin E. L. Lauffer,et al.  Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses , 2016, Nature Communications.

[30]  Robert H. Brown,et al.  CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia , 2016, Nature Communications.

[31]  Eric E. Smith,et al.  The Prevalence and Incidence of Frontotemporal Dementia: a Systematic Review , 2016, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[32]  Sebastian A. Wagner,et al.  Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria , 2016, Proceedings of the National Academy of Sciences.

[33]  L. Petrucelli,et al.  C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins , 2016, Nature Neuroscience.

[34]  D. Underhill,et al.  C9orf72 is required for proper macrophage and microglial function in mice , 2016, Science.

[35]  Mark Ellisman,et al.  NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria , 2016, Cell.

[36]  Anthony R White,et al.  Advances in the Development of Disease-Modifying Treatments for Amyotrophic Lateral Sclerosis , 2016, CNS Drugs.

[37]  H. Horvitz,et al.  Human C9ORF72 Hexanucleotide Expansion Reproduces RNA Foci and Dipeptide Repeat Proteins but Not Neurodegeneration in BAC Transgenic Mice , 2015, Neuron.

[38]  L. Petrucelli,et al.  C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD , 2015, Neuron.

[39]  D. Rujescu,et al.  The role of TREM2 R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease , 2015, Alzheimer's & Dementia.

[40]  A. Aulas,et al.  Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS? , 2015, Front. Cell. Neurosci..

[41]  Jennifer Luebke,et al.  Depletion of microglia and inhibition of exosome synthesis halt tau propagation , 2015, Nature Neuroscience.

[42]  Keith A. Johnson,et al.  Modulation of TREM2 by CD33: a protein QTL study integrates Alzheimer loci in human monocytes , 2015, Nature Neuroscience.

[43]  A. Kanagaraj,et al.  Phase Separation by Low Complexity Domains Promotes Stress Granule Assembly and Drives Pathological Fibrillization , 2015, Cell.

[44]  Marco Y. Hein,et al.  A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation , 2015, Cell.

[45]  J. Burman,et al.  The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy , 2015, Nature.

[46]  N. Hattori,et al.  TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. , 2015, Human molecular genetics.

[47]  M. Monteiro,et al.  Defective Proteasome Delivery of Polyubiquitinated Proteins by Ubiquilin-2 Proteins Containing ALS Mutations , 2015, PloS one.

[48]  Kevin F. Bieniek,et al.  C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits , 2015, Science.

[49]  S. Quake,et al.  A survey of human brain transcriptome diversity at the single cell level , 2015, Proceedings of the National Academy of Sciences.

[50]  Peter K. Stys,et al.  Inefficient clearance of myelin debris by microglia impairs remyelinating processes , 2015, The Journal of experimental medicine.

[51]  Brittany N. Lasseigne,et al.  Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways , 2015, Science.

[52]  T. Wieland,et al.  Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia , 2015, Nature Neuroscience.

[53]  J. Hardy,et al.  SnapShot: Genetics of ALS and FTD , 2015, Cell.

[54]  Manolis Kellis,et al.  Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease , 2015, Nature.

[55]  Frank Baas,et al.  Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex , 2015, Neurobiology of Disease.

[56]  Bruce R. Rosen,et al.  Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: Assessed with [11C]-PBR28 , 2015, NeuroImage: Clinical.

[57]  Timothy A. Miller,et al.  Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known amyotrophic lateral sclerosis genes , 2015, Annals of neurology.

[58]  F. Geissmann,et al.  Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors , 2014, Nature.

[59]  C. Limatola,et al.  Modulating neurotoxicity through CX3CL1/CX3CR1 signaling , 2014, Front. Cell. Neurosci..

[60]  S. Finkbeiner,et al.  Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models , 2014, Nature chemical biology.

[61]  Daphne Koller,et al.  Polarization of the Effects of Autoimmune and Neurodegenerative Risk Alleles in Leukocytes , 2014, Science.

[62]  A. Pestronk,et al.  TREM2 variant p.R47H as a risk factor for sporadic amyotrophic lateral sclerosis. , 2014, JAMA neurology.

[63]  Lorne Zinman,et al.  Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis , 2014, Nature Neuroscience.

[64]  Dorian B. McGavern,et al.  Microglia development and function. , 2014, Annual review of immunology.

[65]  Guy C. Brown,et al.  Microglial phagocytosis of live neurons , 2014, Nature Reviews Neuroscience.

[66]  Mackenzie W. Mathis,et al.  Necroptosis Drives Motor Neuron Death in Models of Both Sporadic and Familial ALS , 2014, Neuron.

[67]  Patrick G. Shaw,et al.  C9orf72 Nucleotide Repeat Structures Initiate Molecular Cascades of Disease , 2014, Nature.

[68]  P. Gleeson,et al.  C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking , 2014, Human molecular genetics.

[69]  R. Kacimi,et al.  Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Deficiency Attenuates Phagocytic Activities of Microglia and Exacerbates Ischemic Damage in Experimental Stroke , 2015, The Journal of Neuroscience.

[70]  J. Ule,et al.  Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic , 2013, Cell reports.

[71]  Nipun A. Mistry,et al.  RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention , 2013, Neuron.

[72]  D. Cleveland,et al.  Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis , 2013, Neuron.

[73]  M. Rossor,et al.  Frontotemporal dementia , 2013, The BMJ.

[74]  R. Myers,et al.  A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. , 2013, Cell reports.

[75]  L. Tran,et al.  Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer’s Disease , 2013, Cell.

[76]  Matthew H. Bailey,et al.  GWAS of Cerebrospinal Fluid Tau Levels Identifies Risk Variants for Alzheimer’s Disease , 2013, Neuron.

[77]  M. Ishii,et al.  Layer V cortical neurons require microglial support for survival during postnatal development , 2013, Nature Neuroscience.

[78]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[79]  Michael Benatar,et al.  Prion-like domain mutations in hnRNPs cause multisystem proteinopathy and ALS , 2013, Nature.

[80]  Y. Li,et al.  Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis , 2013, Nature Neuroscience.

[81]  Kevin F. Bieniek,et al.  Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.

[82]  R. Baloh How do the RNA-binding proteins TDP-43 and FUS relate to amyotrophic lateral sclerosis and frontotemporal degeneration, and to each other? , 2012, Current opinion in neurology.

[83]  A. Chiò,et al.  Extensive genetics of ALS , 2012, Neurology.

[84]  F. Jessen,et al.  A Pan-European Study of the C9orf72 Repeat Associated with FTLD: Geographic Prevalence, Genomic Instability, and Intermediate Repeats , 2012, Human mutation.

[85]  H. Weiner,et al.  Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. , 2012, The Journal of clinical investigation.

[86]  Steven B. Bradfute,et al.  TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. , 2012, Immunity.

[87]  Michelle K. Lupton,et al.  Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. , 2012, Human molecular genetics.

[88]  P. Rossini,et al.  Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease , 2012, Neurology.

[89]  J. Trojanowski,et al.  Microglial Activation Correlates with Disease Progression and Upper Motor Neuron Clinical Symptoms in Amyotrophic Lateral Sclerosis , 2012, PloS one.

[90]  S. C. Chafe,et al.  Mutations in the Profilin 1 Gene Cause Familial Amyotrophic Lateral Sclerosis , 2012, Nature.

[91]  C. Cheroni,et al.  Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: Implication for protein aggregation and immune response , 2012, Progress in Neurobiology.

[92]  M. Vivanco,et al.  Early Functional Deficit and Microglial Disturbances in a Mouse Model of Amyotrophic Lateral Sclerosis , 2012, PloS one.

[93]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[94]  S. Servidei,et al.  P525L FUS mutation is consistently associated with a severe form of juvenile Amyotrophic Lateral Sclerosis , 2012, Neuromuscular Disorders.

[95]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[96]  S. Ajroud‐Driss,et al.  SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[97]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[98]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[99]  M. Giustetto,et al.  Synaptic Pruning by Microglia Is Necessary for Normal Brain Development , 2011, Science.

[100]  J. Hodges,et al.  Motor neuron dysfunction in frontotemporal dementia. , 2011, Brain : a journal of neurology.

[101]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[102]  Pico Caroni,et al.  Selective Neuronal Vulnerability in Neurodegenerative Diseases: from Stressor Thresholds to Degeneration , 2011, Neuron.

[103]  E. Schomburg,et al.  In vivo imaging reveals rapid morphological reactions of astrocytes towards focal lesions in an ALS mouse model , 2011, Neuroscience Letters.

[104]  Patrizia Sola,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2011, Neuron.

[105]  John Q. Trojanowski,et al.  Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.

[106]  Deepak Srinivasan,et al.  Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. , 2010, Human molecular genetics.

[107]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[108]  Bruce L. Miller,et al.  Frontotemporal lobar degeneration , 2010, CNS drugs.

[109]  H. Kretzschmar,et al.  A new subtype of frontotemporal lobar degeneration with FUS pathology. , 2009, Brain : a journal of neurology.

[110]  D. Borchelt,et al.  Variation in aggregation propensities among ALS-associated variants of SOD1: Correlation to human disease , 2009, Human molecular genetics.

[111]  A. Gitler,et al.  TDP-43 Is Intrinsically Aggregation-prone, and Amyotrophic Lateral Sclerosis-linked Mutations Accelerate Aggregation and Increase Toxicity* , 2009, The Journal of Biological Chemistry.

[112]  L. Goldstein,et al.  SOD1 and cognitive dysfunction in familial amyotrophic lateral sclerosis , 2009, Journal of Neurology.

[113]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[114]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[115]  N. Cairns,et al.  ALS and FTLD: two faces of TDP‐43 proteinopathy , 2008, European journal of neurology.

[116]  H. Neumann,et al.  Debris clearance by microglia: an essential link between degeneration and regeneration , 2008, Brain : a journal of neurology.

[117]  C. Nüsslein-Volhard,et al.  Live Imaging of Neuronal Degradation by Microglia Reveals a Role for v0-ATPase a1 in Phagosomal Fusion In Vivo , 2008, Cell.

[118]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[119]  D. Gutmann,et al.  Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis , 2008, Nature Neuroscience.

[120]  G. Bjørkøy,et al.  p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy* , 2007, Journal of Biological Chemistry.

[121]  J. Schneider,et al.  Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration , 2007, Acta Neuropathologica.

[122]  J. Trojanowski,et al.  Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations , 2007, Annals of neurology.

[123]  Hynek Wichterle,et al.  Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons , 2007, Nature Neuroscience.

[124]  J. Trojanowski,et al.  Synapse Loss and Microglial Activation Precede Tangles in a P301S Tauopathy Mouse Model , 2007, Neuron.

[125]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[126]  S. Mckercher,et al.  Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis , 2006, Proceedings of the National Academy of Sciences.

[127]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[128]  C. Duijn,et al.  Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 , 2006, Nature.

[129]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[130]  Hideyuki Okano,et al.  Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice , 2006, Nature.

[131]  Masaaki Komatsu,et al.  Loss of autophagy in the central nervous system causes neurodegeneration in mice , 2006, Nature.

[132]  G. Kollias,et al.  Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia , 2006, Science.

[133]  P. Monk,et al.  Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis , 2005, Glia.

[134]  S H Appel,et al.  Prevalence and patterns of cognitive impairment in sporadic ALS , 2005, Neurology.

[135]  G. Schellenberg,et al.  Regulation of tau isoform expression and dementia. , 2005, Biochimica et biophysica acta.

[136]  Elizabeth L Sampson,et al.  In vivo detection of microglial activation in frontotemporal dementia , 2004, Annals of neurology.

[137]  B. Ransom,et al.  Increased cytotoxic potential of microglia from ALS‐transgenic mice , 2004, Glia.

[138]  John W Griffin,et al.  DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). , 2004, American journal of human genetics.

[139]  R. Nussbaum,et al.  Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1 , 2004, Science.

[140]  F. Turkheimer,et al.  Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study , 2004, Neurobiology of Disease.

[141]  Shin J. Oh,et al.  Mutant dynactin in motor neuron disease , 2003, Nature Genetics.

[142]  A. Kakita,et al.  Neuropathology with Clinical Correlations of Sporadic Amyotrophic Lateral Sclerosis: 102 Autopsy Cases Examined Between 1962 and 2000 , 2003, Brain pathology.

[143]  Catherine Lomen-Hoerth,et al.  The overlap of amyotrophic lateral sclerosis and frontotemporal dementia , 2002, Neurology.

[144]  S. Appel,et al.  Immune reactivity in a mouse model of familial ALS correlates with disease progression , 2001, Neurology.

[145]  D. Neary,et al.  Classification and Description of Frontotemporal Dementias , 2000, Annals of the New York Academy of Sciences.

[146]  Takeshi Noda,et al.  LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing , 2000, The EMBO journal.

[147]  R. Miller,et al.  Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[148]  A. Walling,et al.  Amyotrophic lateral sclerosis: Lou Gehrig's disease. , 1999, American family physician.

[149]  T. Iwaki,et al.  Skein-like inclusions in the neostriatum from a case of amyotrophic lateral sclerosis with dementia , 1998, Acta Neuropathologica.

[150]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[151]  V. Meininger,et al.  Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. , 1994, Human molecular genetics.

[152]  Y. Ohsumi,et al.  Isolation and characterization of autophagy‐defective mutants of Saccharomyces cerevisiae , 1993, FEBS letters.

[153]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[154]  S. Hirai,et al.  Ubiquitin-positive intraneuronal inclusions in the extramotor cortices of presenile dementia patients with motor neuron disease , 1992, Journal of Neurology.

[155]  D. Neary,et al.  Hippocampal and neocortical ubiquitin-immunoreactive inclusions in amyotrophic lateral sclerosis with dementia , 1992, Neuroscience Letters.

[156]  P. Mcgeer,et al.  Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. , 1992, The American journal of pathology.

[157]  Yoichi Nakazato,et al.  New ubiquitin-positive intraneuronal inclusions in the extra-motor cortices in patients with amyotrophic lateral sclerosis , 1991, Neuroscience Letters.

[158]  J. Haines,et al.  Linkage of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence of genetic-locus heterogeneity. , 1991, The New England journal of medicine.

[159]  S. Appel,et al.  IgG reactivity in the spinal cord and motor cortex in amyotrophic lateral sclerosis. , 1990, Archives of neurology.

[160]  R. Kuncl,et al.  Amyotrophic lateral sclerosis: An unconventional autoimmune disease? , 1989, Annals of neurology.

[161]  L. Rowland,et al.  Amyotrophic Lateral Sclerosis , 1980, Neurology.

[162]  G. Fraedrich,et al.  Juvenile recurrent respiratory papillomatosis: Still a mystery disease with difficult management , 2007, Head & neck.

[163]  R. Klausen,et al.  Selective , 2020, Encyclopedia of the UN Sustainable Development Goals.

[164]  W. Baumgärtner,et al.  Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. , 2013, Brain : a journal of neurology.

[165]  J. Trojanowski,et al.  Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis , 2011, Acta Neuropathologica.

[166]  M. Hayden,et al.  Juvenile amyotrophic lateral sclerosis , 2020, Definitions.

[167]  D. Klionsky,et al.  Vacuolar import of proteins and organelles from the cytoplasm. , 1999, Annual review of cell and developmental biology.

[168]  D. B. Williams,et al.  Motor neuron disease (amyotrophic lateral sclerosis). , 1991, Mayo Clinic proceedings.