Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg

Nonlinear parabolic equation is studied with a linearized Galerkin finite element method. First of all, a time-discrete system is established to split the error into two parts which are called the temporal error and the spatial error, respectively. On one hand, a rigorous analysis for the regularity of the time-discrete system is presented based on the proof of the temporal error skillfully. On the other hand, the spatial error is derived $$\tau $$τ-independently with the above achievements. Then, the superclose result of order $$O(h^2+\tau ^2)$$O(h2+τ2) in broken $$H^1$$H1-norm is deduced without any restriction of $$\tau $$τ. The two typical characters of the $${\textit{EQ}}_1^{rot}$$EQ1rot nonconforming FE (see Lemma 1 below) play an important role in the procedure of proof. At last, numerical results are provided in the last section to confirm the theoretical analysis. Here, h is the subdivision parameter, and $$\tau $$τ, the time step.

[1]  Tongke Wang,et al.  Cubic superconvergent finite volume element method for one-dimensional elliptic and parabolic equations , 2010, J. Comput. Appl. Math..

[2]  Jilu Wang,et al.  A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..

[3]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[4]  Richard E. Ewing,et al.  Some new error estimates of a semidiscrete finite volume element method for a parabolic integro-differential equation with nonsmooth initial data , 2006, SIAM J. Numer. Anal..

[5]  Sangita Yadav,et al.  Optimal Error Estimates of Two Mixed Finite Element Methods for Parabolic Integro-Differential Equations with Nonsmooth Initial Data , 2013, J. Sci. Comput..

[6]  Junping Wang,et al.  Weak Galerkin finite element methods for Parabolic equations , 2012, 1212.3637.

[7]  Error Estimates for the Finite Element Method , 2002 .

[8]  Luming Zhang,et al.  New conservative difference schemes for a coupled nonlinear Schrödinger system , 2010, Appl. Math. Comput..

[9]  Louis Nirenberg,et al.  An extended interpolation inequality , 1966 .

[10]  Tongjun Sun,et al.  Domain decomposition procedures combined with H1-Galerkin mixed finite element method for parabolic equation , 2014, J. Comput. Appl. Math..

[11]  Weizhu Bao,et al.  Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..

[12]  Dongwoo Sheen,et al.  P1-Nonconforming Quadrilateral Finite Element Methods for Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[13]  Hehu Xie,et al.  Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods , 2009 .

[14]  Xiaoming He,et al.  Immersed finite element methods for parabolic equations with moving interface , 2013 .

[15]  Tongke Wang Alternating direction finite volume element methods for 2D parabolic partial differential equations , 2008 .

[16]  Fengxin Chen Crank-Nicolson Fully Discrete -Galerkin Mixed Finite Element Approximation of One Nonlinear Integrodifferential Model , 2014 .

[17]  Mitchell Luskin,et al.  A Galerkin Method for Nonlinear Parabolic Equations with Nonlinear Boundary Conditions , 1979 .

[18]  Wang Cai-xia,et al.  Superconvergence Analysis of Nonconforming Mixed Finite Element Method for Stokes Problem , 2007 .

[19]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[20]  Q. Lin,et al.  Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .

[21]  Daoqi Yang,et al.  Improved error estimation of dynamic finite element methods for second-order parabolic equations , 2000 .

[22]  Weiwei Sun,et al.  Error Estimates of Splitting Galerkin Methods for Heat and Sweat Transport in Textile Materials , 2013, SIAM J. Numer. Anal..

[23]  Graeme Fairweather,et al.  An H1-Galerkin Mixed Finite Element Method for an Evolution Equation with a Positive-Type Memory Term , 2002, SIAM J. Numer. Anal..

[24]  Richard E. Ewing,et al.  Mixed Finite Element Approximations of Parabolic Integro-Differential Equations with Nonsmooth Initial Data , 2009, SIAM J. Numer. Anal..

[25]  Yadong Zhang,et al.  Superconvergence of an H1-Galerkin nonconforming mixed finite element method for a parabolic equation , 2013, Comput. Math. Appl..

[26]  Huadong Gao,et al.  Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.

[27]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[28]  Jincheng Ren,et al.  Nonconforming mixed finite element approximation to the stationary Navier–Stokes equations on anisotropic meshes , 2009 .

[29]  Clint Dawson,et al.  Solution of Parabolic Equations by Backward Euler-Mixed Finite Element Methods on a Dynamically Changing Mesh , 1999, SIAM J. Numer. Anal..

[30]  G. Fairweather,et al.  H1‐Galerkin mixed finite element methods for parabolic partial integro‐differential equations , 2002 .

[31]  Amiya K. Pani An H 1 -Galerkin Mixed Finite Element Method for Parabolic Partial Differential Equations , 1998 .

[32]  Weiwei Sun,et al.  Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..

[33]  Chao Xu,et al.  Anisotropic Nonconforming $${ EQ}_1^{rot}$$ Quadrilateral Finite Element Approximation to Second Order Elliptic Problems , 2013, J. Sci. Comput..

[34]  Shao-chunChen,et al.  AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS , 2005 .

[35]  Buyang Li,et al.  Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.