Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg
暂无分享,去创建一个
Dongyang Shi | Junjun Wang | Fengna Yan | D. Shi | Junjun Wang | F. Yan
[1] Tongke Wang,et al. Cubic superconvergent finite volume element method for one-dimensional elliptic and parabolic equations , 2010, J. Comput. Appl. Math..
[2] Jilu Wang,et al. A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..
[3] R. Rannacher,et al. Simple nonconforming quadrilateral Stokes element , 1992 .
[4] Richard E. Ewing,et al. Some new error estimates of a semidiscrete finite volume element method for a parabolic integro-differential equation with nonsmooth initial data , 2006, SIAM J. Numer. Anal..
[5] Sangita Yadav,et al. Optimal Error Estimates of Two Mixed Finite Element Methods for Parabolic Integro-Differential Equations with Nonsmooth Initial Data , 2013, J. Sci. Comput..
[6] Junping Wang,et al. Weak Galerkin finite element methods for Parabolic equations , 2012, 1212.3637.
[7] Error Estimates for the Finite Element Method , 2002 .
[8] Luming Zhang,et al. New conservative difference schemes for a coupled nonlinear Schrödinger system , 2010, Appl. Math. Comput..
[9] Louis Nirenberg,et al. An extended interpolation inequality , 1966 .
[10] Tongjun Sun,et al. Domain decomposition procedures combined with H1-Galerkin mixed finite element method for parabolic equation , 2014, J. Comput. Appl. Math..
[11] Weizhu Bao,et al. Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..
[12] Dongwoo Sheen,et al. P1-Nonconforming Quadrilateral Finite Element Methods for Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..
[13] Hehu Xie,et al. Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods , 2009 .
[14] Xiaoming He,et al. Immersed finite element methods for parabolic equations with moving interface , 2013 .
[15] Tongke Wang. Alternating direction finite volume element methods for 2D parabolic partial differential equations , 2008 .
[16] Fengxin Chen. Crank-Nicolson Fully Discrete -Galerkin Mixed Finite Element Approximation of One Nonlinear Integrodifferential Model , 2014 .
[17] Mitchell Luskin,et al. A Galerkin Method for Nonlinear Parabolic Equations with Nonlinear Boundary Conditions , 1979 .
[18] Wang Cai-xia,et al. Superconvergence Analysis of Nonconforming Mixed Finite Element Method for Stokes Problem , 2007 .
[19] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .
[20] Q. Lin,et al. Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .
[21] Daoqi Yang,et al. Improved error estimation of dynamic finite element methods for second-order parabolic equations , 2000 .
[22] Weiwei Sun,et al. Error Estimates of Splitting Galerkin Methods for Heat and Sweat Transport in Textile Materials , 2013, SIAM J. Numer. Anal..
[23] Graeme Fairweather,et al. An H1-Galerkin Mixed Finite Element Method for an Evolution Equation with a Positive-Type Memory Term , 2002, SIAM J. Numer. Anal..
[24] Richard E. Ewing,et al. Mixed Finite Element Approximations of Parabolic Integro-Differential Equations with Nonsmooth Initial Data , 2009, SIAM J. Numer. Anal..
[25] Yadong Zhang,et al. Superconvergence of an H1-Galerkin nonconforming mixed finite element method for a parabolic equation , 2013, Comput. Math. Appl..
[26] Huadong Gao,et al. Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.
[27] Weiwei Sun,et al. Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..
[28] Jincheng Ren,et al. Nonconforming mixed finite element approximation to the stationary Navier–Stokes equations on anisotropic meshes , 2009 .
[29] Clint Dawson,et al. Solution of Parabolic Equations by Backward Euler-Mixed Finite Element Methods on a Dynamically Changing Mesh , 1999, SIAM J. Numer. Anal..
[30] G. Fairweather,et al. H1‐Galerkin mixed finite element methods for parabolic partial integro‐differential equations , 2002 .
[31] Amiya K. Pani. An H 1 -Galerkin Mixed Finite Element Method for Parabolic Partial Differential Equations , 1998 .
[32] Weiwei Sun,et al. Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..
[33] Chao Xu,et al. Anisotropic Nonconforming $${ EQ}_1^{rot}$$ Quadrilateral Finite Element Approximation to Second Order Elliptic Problems , 2013, J. Sci. Comput..
[34] Shao-chunChen,et al. AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS , 2005 .
[35] Buyang Li,et al. Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.