Breaking down protein degradation mechanisms in cardiac muscle.

[1]  Xuejun Wang,et al.  Genetically Induced Moderate Inhibition of the Proteasome in Cardiomyocytes Exacerbates Myocardial Ischemia-Reperfusion Injury in Mice , 2012, Circulation research.

[2]  Vivian F Su,et al.  Ubiquitination, intracellular trafficking, and degradation of connexins. , 2012, Archives of biochemistry and biophysics.

[3]  Jun Ren,et al.  Autophagy and cardiovascular aging , 2012, Cell cycle.

[4]  T. Myers,et al.  Accumulation of the Inner Nuclear Envelope Protein Sun1 Is Pathogenic in Progeric and Dystrophic Laminopathies , 2012, Cell.

[5]  Yanping Zhang,et al.  Regulation of p53: a collaboration between Mdm2 and MdmX , 2012, Oncotarget.

[6]  B. Shenkman,et al.  Various Jobs of Proteolytic Enzymes in Skeletal Muscle during Unloading: Facts and Speculations , 2012, Journal of biomedicine & biotechnology.

[7]  S. Houser,et al.  c-Cbl Ubiquitin Ligase Regulates Focal Adhesion Protein Turnover and Myofibril Degeneration Induced by Neutrophil Protease Cathepsin G* , 2011, The Journal of Biological Chemistry.

[8]  J. Li,et al.  Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice. , 2011, The Journal of clinical investigation.

[9]  V. Parnaik,et al.  Lamins, laminopathies and disease mechanisms: Possible role for proteasomal degradation of key regulatory proteins , 2011, Journal of Biosciences.

[10]  Xuejun Wang,et al.  Autophagy and p62 in Cardiac Proteinopathy , 2011, Circulation Research.

[11]  D. Glass,et al.  Endogenous Muscle Atrophy F-Box Mediates Pressure Overload–Induced Cardiac Hypertrophy Through Regulation of Nuclear Factor-&kgr;B , 2011, Circulation research.

[12]  N. Hariharan,et al.  Oxidative stress stimulates autophagic flux during ischemia/reperfusion. , 2011, Antioxidants & redox signaling.

[13]  D. Sterner,et al.  Targeting the Ubiquitin E3 Ligase MuRF1 to Inhibit Muscle Atrophy , 2011, Cell Biochemistry and Biophysics.

[14]  T. Lamark,et al.  Selective autophagy mediated by autophagic adapter proteins , 2011, Autophagy.

[15]  Ruiying Zhao,et al.  Subunit 6 of the COP9 signalosome promotes tumorigenesis in mice through stabilization of MDM2 and is upregulated in human cancers. , 2011, The Journal of clinical investigation.

[16]  Dian J. Cao,et al.  Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy , 2011, Proceedings of the National Academy of Sciences.

[17]  Cam Patterson,et al.  Tearin' Up My Heart: Proteolysis in the Cardiac Sarcomere* , 2011, The Journal of Biological Chemistry.

[18]  Norbert Frey,et al.  Cardiac Z-disc Signaling Network* , 2011, The Journal of Biological Chemistry.

[19]  Jinbao Liu,et al.  Perturbation of Cullin Deneddylation via Conditional Csn8 Ablation Impairs the Ubiquitin–Proteasome System and Causes Cardiomyocyte Necrosis and Dilated Cardiomyopathy in Mice , 2011, Circulation research.

[20]  M. Albesa,et al.  Ubiquitylation and SUMOylation of Cardiac Ion Channels , 2010, Journal of cardiovascular pharmacology.

[21]  Zhelong Xu,et al.  Role of autophagy in myocardial reperfusion injury. , 2010, Frontiers in bioscience.

[22]  S. Hoerstrup,et al.  Stabilised beta-catenin in postnatal ventricular myocardium leads to dilated cardiomyopathy and premature death , 2010, Basic Research in Cardiology.

[23]  N. Mizushima,et al.  Methods in Mammalian Autophagy Research , 2010, Cell.

[24]  Xuejun Wang,et al.  The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective. , 2010, Cardiovascular research.

[25]  S. Lecker,et al.  Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms. , 2010, Cardiovascular research.

[26]  Ju Chen,et al.  Cell-cell connection to cardiac disease. , 2009, Trends in cardiovascular medicine.

[27]  H. Qadota,et al.  CSN-5, a component of the COP9 signalosome complex, regulates the levels of UNC-96 and UNC-98, two components of M-lines in Caenorhabditis elegans muscle. , 2009, Molecular biology of the cell.

[28]  S. Iskandar,et al.  Cardiac Amyloidosis Responding to Bortezomib: Case Report and Review of Literature , 2009, Current cardiology reviews.

[29]  Ivan Dikic,et al.  A role for ubiquitin in selective autophagy. , 2009, Molecular cell.

[30]  Cam Patterson,et al.  Muscle ring finger 1 mediates cardiac atrophy in vivo. , 2009, American journal of physiology. Heart and circulatory physiology.

[31]  C. Robinson,et al.  Symmetrical modularity of the COP9 signalosome complex suggests its multifunctionality. , 2009, Structure.

[32]  X. Deng,et al.  The COP9 signalosome: more than a protease. , 2008, Trends in biochemical sciences.

[33]  N. Severs,et al.  Gap junctions; , 2008 .

[34]  M. Daniels,et al.  Krp1 (Sarcosin) promotes lateral fusion of myofibril assembly intermediates in cultured mouse cardiomyocytes. , 2008, Experimental cell research.

[35]  G. Wilding,et al.  A phase I pharmacodynamic trial of bortezomib in combination with doxorubicin in patients with advanced cancer , 2008, Cancer Chemotherapy and Pharmacology.

[36]  Vivian F Su,et al.  A Novel Connexin43-interacting Protein, CIP75, Which Belongs to the UbL-UBA Protein Family, Regulates the Turnover of Connexin43* , 2008, Journal of Biological Chemistry.

[37]  A. Baldwin,et al.  Proteasome inhibition promotes regression of left ventricular hypertrophy. , 2008, American journal of physiology. Heart and circulatory physiology.

[38]  S. Pattingre,et al.  Regulation of macroautophagy by mTOR and Beclin 1 complexes. , 2008, Biochimie.

[39]  G. Baumann,et al.  Suppression of Cardiomyocyte Hypertrophy by Inhibition of the Ubiquitin-Proteasome System , 2008, Hypertension.

[40]  M. Valencik,et al.  Subunit 3 of the COP9 Signalosome Is Poised to Facilitate Communication between the Extracellular Matrix and the Nucleus through the Muscle-Specific β1D Integrin , 2008, Cell communication & adhesion.

[41]  Christian C Witt,et al.  Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2 , 2007, The EMBO journal.

[42]  I. Benjamin,et al.  Autophagy is an adaptive response in desmin-related cardiomyopathy , 2007, Proceedings of the National Academy of Sciences.

[43]  Guillermina Lozano,et al.  Loss of Mdm4 Results in p53-Dependent Dilated Cardiomyopathy , 2007, Circulation.

[44]  Yasushi Matsumura,et al.  The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress , 2007, Nature Medicine.

[45]  M. Membrez,et al.  The KCNQ1 potassium channel is down-regulated by ubiquitylating enzymes of the Nedd4/Nedd4-like family. , 2007, Cardiovascular research.

[46]  L. Harris,et al.  MDM2 Splice Variants Predominantly Localize to the Nucleoplasm Mediated by a COOH-Terminal Nuclear Localization Signal , 2007, Molecular Cancer Research.

[47]  I. Komuro,et al.  p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload , 2007, Nature.

[48]  E. Olson,et al.  Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction , 2007, Proceedings of the National Academy of Sciences.

[49]  Cam Patterson,et al.  Muscle Ring Finger 1, but not Muscle Ring Finger 2, Regulates Cardiac Hypertrophy In Vivo , 2007, Circulation research.

[50]  L. Carrier,et al.  Cardiac myosin-binding protein C in the heart. , 2007, Archives des maladies du coeur et des vaisseaux.

[51]  O. Zolk,et al.  Proteomic expression analysis of cardiomyocytes subjected to proteasome inhibition. , 2007, Biochemical and biophysical research communications.

[52]  Y. Saeki,et al.  Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity , 2007, Nature Structural &Molecular Biology.

[53]  A. Klein-Szanto,et al.  Phosphorylation-Dependent Ubiquitination of Cyclin D1 by the SCFFBX4-αB Crystallin Complex , 2006 .

[54]  Xinshan Chen,et al.  Myocardial Cx43 expression in the cases of sudden death due to dilated cardiomyopathy. , 2006, Forensic science international.

[55]  C. Willey,et al.  Enhanced ubiquitination of cytoskeletal proteins in pressure overloaded myocardium is accompanied by changes in specific E3 ligases. , 2006, Journal of molecular and cellular cardiology.

[56]  Jörg Bomke,et al.  Ubiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation-modulated process , 2006, Journal of Cell Science.

[57]  L. Dell’Italia,et al.  Role of Protein-tyrosine Phosphatase SHP2 in Focal Adhesion Kinase Down-regulation during Neutrophil Cathepsin G-induced Cardiomyocytes Anoikis* , 2006, Journal of Biological Chemistry.

[58]  E. Olson,et al.  Suppression of Class I and II Histone Deacetylases Blunts Pressure-Overload Cardiac Hypertrophy , 2006, Circulation.

[59]  O. Zolk,et al.  The ubiquitin-proteasome system: focus on the heart. , 2006, Cardiovascular research.

[60]  R. Liao,et al.  The β-Catenin/T-Cell Factor/Lymphocyte Enhancer Factor Signaling Pathway Is Required for Normal and Stress-Induced Cardiac Hypertrophy , 2006, Molecular and Cellular Biology.

[61]  G. Giaccone,et al.  Severe reversible cardiac failure after bortezomib treatment combined with chemotherapy in a non-small cell lung cancer patient: a case report , 2006, BMC Cancer.

[62]  V. Regitz-Zagrosek,et al.  The FASEB Journal • Research Communication Estrogen receptor alpha up-regulation and redistribution in human heart failure , 2022 .

[63]  I. Imanaga,et al.  Remodeling of connexin 43 in the diabetic rat heart , 2006, Molecular and Cellular Biochemistry.

[64]  T. Yamashita,et al.  CSN5/Jab1 inhibits cardiac L-type Ca2+ channel activity through protein-protein interactions. , 2006, Journal of molecular and cellular cardiology.

[65]  Jinbao Liu,et al.  Aberrant protein aggregation is essential for a mutant desmin to impair the proteolytic function of the ubiquitin-proteasome system in cardiomyocytes. , 2006, Journal of molecular and cellular cardiology.

[66]  L. Qin,et al.  Differential Regulation of Cardiomyocyte Survival and Hypertrophy by MDM2, an E3 Ubiquitin Ligase* , 2006, Journal of Biological Chemistry.

[67]  G. Lozano,et al.  Tissue-Specific Differences of p53 Inhibition by Mdm2 and Mdm4 , 2006, Molecular and Cellular Biology.

[68]  A. Samarel,et al.  Costameres, focal adhesions, and cardiomyocyte mechanotransduction. , 2005, American journal of physiology. Heart and circulatory physiology.

[69]  J. Pines,et al.  Proteolysis: anytime, any place, anywhere? , 2005, Nature Cell Biology.

[70]  Christian C Witt,et al.  MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. , 2005, Journal of molecular biology.

[71]  Thomas Sejersen,et al.  The Kinase Domain of Titin Controls Muscle Gene Expression and Protein Turnover , 2005, Science.

[72]  K. Lindenberg,et al.  Impairment of the ubiquitin-proteasome system by truncated cardiac myosin binding protein C mutants. , 2005, Cardiovascular research.

[73]  Cam Patterson,et al.  Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Da-Zhi Wang,et al.  Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. , 2004, The Journal of clinical investigation.

[75]  M. Hori,et al.  Prolonged Endoplasmic Reticulum Stress in Hypertrophic and Failing Heart After Aortic Constriction: Possible Contribution of Endoplasmic Reticulum Stress to Cardiac Myocyte Apoptosis , 2004, Circulation.

[76]  Marc A. Thomas,et al.  Cardiac Voltage-Gated Sodium Channel Nav1.5 Is Regulated by Nedd4-2 Mediated Ubiquitination , 2004, Circulation research.

[77]  D. C. Dias,et al.  Nedd8 on cullin: building an expressway to protein destruction , 2004, Oncogene.

[78]  R. Nusse,et al.  Convergence of Wnt, ß-Catenin, and Cadherin Pathways , 2004, Science.

[79]  J. Adams,et al.  Development of the Proteasome Inhibitor Velcade™ (Bortezomib) , 2004, Cancer investigation.

[80]  M. Matsui,et al.  In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. , 2003, Molecular biology of the cell.

[81]  Shinya Kubo,et al.  Correlation of connexin43 expression and late ventricular potentials in nonischemic dilated cardiomyopathy. , 2003, Circulation journal : official journal of the Japanese Circulation Society.

[82]  P. di Nardo,et al.  Beta-catenin accumulates in intercalated disks of hypertrophic cardiomyopathic hearts. , 2003, Cardiovascular research.

[83]  S. Emr,et al.  A unified nomenclature for yeast autophagy-related genes. , 2003, Developmental cell.

[84]  K. Lindsten,et al.  A transgenic mouse model of the ubiquitin/proteasome system , 2003, Nature Biotechnology.

[85]  Geng Wu,et al.  Structure of a -TrCP1-Skp1--Catenin Complex , 2003 .

[86]  I. Komuro,et al.  Roles of cardiac transcription factors in cardiac hypertrophy. , 2003, Circulation research.

[87]  M. Komajda,et al.  Hypertrophic Cardiomyopathy: Distribution of Disease Genes, Spectrum of Mutations, and Implications for a Molecular Diagnosis Strategy , 2003, Circulation.

[88]  M. Muratani,et al.  How the ubiquitin–proteasome system controls transcription , 2003, Nature Reviews Molecular Cell Biology.

[89]  W. Aird,et al.  PR-39 and PR-11 peptides inhibit ischemia-reperfusion injury by blocking proteasome-mediated IκBα degradation , 2001 .

[90]  G. Fishman,et al.  Heterogeneous Expression of Gap Junction Channels in the Heart Leads to Conduction Defects and Ventricular Dysfunction , 2001, Circulation.

[91]  T. Hewett,et al.  Expression of R120G–αB-Crystallin Causes Aberrant Desmin and αB-Crystallin Aggregation and Cardiomyopathy in Mice , 2001 .

[92]  B. Vanderhyden,et al.  Analysis of ubiquitination in vivo using a transgenic mouse model. , 2001, BioTechniques.

[93]  K. Pelin,et al.  Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. , 2001, Journal of molecular biology.

[94]  L. Nepomnyashchikh,et al.  Focal degradation of cytoplasmic organelles in cardiomyocytes during regenerative and plastic myocardial insufficiency , 2000, Bulletin of Experimental Biology and Medicine.

[95]  E. Olson,et al.  Regulation of Microtubule Dynamics and Myogenic Differentiation by Murf, a Striated Muscle Ring-Finger Protein , 2000, The Journal of cell biology.

[96]  L. M. Roberts,et al.  Regulation of Connexin Degradation as a Mechanism to Increase Gap Junction Assembly and Function* , 2000, The Journal of Biological Chemistry.

[97]  W. Allan,et al.  Long QT Syndrome , 1998, Pediatrics.

[98]  M. Oertel,et al.  Alpha-B-Crystallin Expression in Tissues Derived from Different Species in Different Age Groups , 2000, Ophthalmologica.

[99]  P. Codogno,et al.  Distinct Classes of Phosphatidylinositol 3′-Kinases Are Involved in Signaling Pathways That Control Macroautophagy in HT-29 Cells* , 2000, The Journal of Biological Chemistry.

[100]  J. Seidman,et al.  Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. , 1999, The New England journal of medicine.

[101]  J. Conte,et al.  Increased p53 protein expression in human failing myocardium. , 1999, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[102]  F. Muntoni,et al.  Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy , 1999, Nature Genetics.

[103]  M. Prevost,et al.  A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy , 1998, Nature Genetics.

[104]  J. Saffitz,et al.  Proteolysis of connexin43-containing gap junctions in normal and heat-stressed cardiac myocytes. , 1998, Cardiovascular research.

[105]  Jeffrey Robbins,et al.  A Calcineurin-Dependent Transcriptional Pathway for Cardiac Hypertrophy , 1998, Cell.

[106]  M. Chiesi,et al.  Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments. , 1992, Circulation research.

[107]  T. Borg,et al.  Immunolocalization of ubiquitin conjugates at Z-bands and intercalated discs of rat cardiomyocytes in vitro and in vivo. , 1992, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[108]  Y. Moriyama,et al.  Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. , 1991, The Journal of biological chemistry.

[109]  M. Bahro,et al.  Short-term stimulation by propranolol and verapamil of cardiac cellular autophagy. , 1987, Journal of molecular and cellular cardiology.

[110]  P. Teh,et al.  Obscurin and KCTD6 regulate cullin-dependent small ankyrin-1 (sAnk1.5) protein turnover , 2012, Molecular biology of the cell.

[111]  Xuejun Wang,et al.  Proteasome malfunction activates macroautophagy in the heart. , 2011, American journal of cardiovascular disease.

[112]  H. Tan,et al.  Cardiac sodium channelopathies , 2009, Pflügers Archiv - European Journal of Physiology.

[113]  Michael D. Schneider,et al.  Cardiomyocyte-restricted deletion of connexin43 during mouse development. , 2006, Journal of molecular and cellular cardiology.

[114]  Raymond J. Deshaies,et al.  Function and regulation of cullin–RING ubiquitin ligases , 2005, Nature Reviews Molecular Cell Biology.

[115]  A. Ciechanover,et al.  The ubiquitin-proteasome system in cardiovascular diseases-a hypothesis extended. , 2004, Cardiovascular research.

[116]  Sawa Kostin,et al.  Gap junction remodeling and altered connexin43 expression in the failing human heart , 2004, Molecular and Cellular Biochemistry.

[117]  Geng Wu,et al.  Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. , 2003, Molecular cell.