Mechanism of U6 snRNA oligouridylation by human TUT1

[1]  H. Kuroyanagi,et al.  Structure of the Caenorhabditis elegans m6A methyltransferase METT10 that regulates SAM homeostasis , 2023, Nucleic acids research.

[2]  Q. Gong,et al.  Molecular mechanism underlying the di-uridylation activity of Arabidopsis TUTase URT1 , 2022, Nucleic acids research.

[3]  A. Dziembowski,et al.  Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases , 2020, Wiley interdisciplinary reviews. RNA.

[4]  V. Kim,et al.  A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing , 2020, Nature Reviews Molecular Cell Biology.

[5]  S. Yamashita,et al.  Mechanistic insights into m6A modification of U6 snRNA by human METTL16 , 2020, Nucleic acids research.

[6]  S. Yamashita,et al.  Crystal structure of the Lin28-interacting module of human terminal uridylyltransferase that regulates let-7 expression , 2019, Nature Communications.

[7]  Y. Yashiro,et al.  Function and Regulation of Human Terminal Uridylyltransferases , 2018, Front. Genet..

[8]  Sebastien M. Weyn-Vanhentenryck,et al.  LIN28 Selectively Modulates a Subclass of Let-7 MicroRNAs. , 2018, Molecular cell.

[9]  S. Butcher,et al.  Architecture of the U6 snRNP reveals specific recognition of 3′-end processed U6 snRNA , 2018, Nature Communications.

[10]  Anton J. Enright,et al.  mRNA 3′ uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome , 2017, Nature.

[11]  L. Joshua-Tor,et al.  Multi-domain utilization by TUT4 and TUT7 in control of let-7 biogenesis , 2017, Nature Structural &Molecular Biology.

[12]  Y. Takagi,et al.  Crystal structures of U6 snRNA-specific terminal uridylyltransferase , 2017, Nature Communications.

[13]  D. Patel,et al.  TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms , 2015, The EMBO journal.

[14]  D. Patel,et al.  Uridylation by TUT4 and TUT7 Marks mRNA for Degradation , 2014, Cell.

[15]  L. Zon,et al.  Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4) , 2014, Nucleic acids research.

[16]  Jonathan P. Staley,et al.  RNA catalyzes nuclear pre-mRNA splicing , 2013, Nature.

[17]  A. Dziembowski,et al.  U6 RNA biogenesis and disease association , 2013, Wiley interdisciplinary reviews. RNA.

[18]  Brendan J. Frey,et al.  A compendium of RNA-binding motifs for decoding gene regulation , 2013, Nature.

[19]  C. Azzalin,et al.  The Mpn1 RNA exonuclease: Cellular functions and implication in disease , 2013, FEBS letters.

[20]  P. Campbell,et al.  Aberrant 3' oligoadenylation of spliceosomal U6 small nuclear RNA in poikiloderma with neutropenia. , 2013, Blood.

[21]  Samantha A. Morris,et al.  Zcchc11 Uridylates Mature miRNAs to Enhance Neonatal IGF-1 Expression, Growth, and Survival , 2012, PLoS genetics.

[22]  Hyeshik Chang,et al.  Mono-Uridylation of Pre-MicroRNA as a Key Step in the Biogenesis of Group II let-7 MicroRNAs , 2012, Cell.

[23]  R. Gregory,et al.  Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). , 2012, RNA.

[24]  K. Ginalski,et al.  C16orf57, a gene mutated in poikiloderma with neutropenia, encodes a putative phosphodiesterase responsible for the U6 snRNA 3' end modification. , 2012, Genes & development.

[25]  A. Meinhart,et al.  Crystal structures of the Cid1 poly (U) polymerase reveal the mechanism for UTP selectivity , 2012, Nucleic acids research.

[26]  C. Norbury,et al.  Structural basis for the activity of a cytoplasmic RNA terminal uridylyl transferase , 2012, Nature Structural &Molecular Biology.

[27]  S. Thore,et al.  Functional implications from the Cid1 poly(U) polymerase crystal structure. , 2012, Structure.

[28]  R. Gregory,et al.  Molecular Basis for Interaction of let-7 MicroRNAs with Lin28 , 2011, Cell.

[29]  C. Joo,et al.  Single‐molecule approach to immunoprecipitated protein complexes: insights into miRNA uridylation , 2011, EMBO reports.

[30]  C. Will,et al.  Spliceosome structure and function. , 2011, Cold Spring Harbor perspectives in biology.

[31]  P. Janmey,et al.  Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids , 2010, Cell.

[32]  R. Gregory,et al.  Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in embryonic stem cells , 2009, Nature Structural &Molecular Biology.

[33]  C. Joo,et al.  TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation , 2009, Cell.

[34]  J. Neilson,et al.  Zcchc11-dependent uridylation of microRNA directs cytokine expression , 2009, Nature Cell Biology.

[35]  C. Joo,et al.  Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. , 2008, Molecular cell.

[36]  Georges Martin,et al.  RNA-specific ribonucleotidyl transferases. , 2007, RNA.

[37]  C. Norbury,et al.  The Cid1 family of non‐canonical poly(A) polymerases , 2006, Yeast.

[38]  H. Urlaub,et al.  Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. , 2006, RNA.

[39]  H. Urlaub,et al.  RNA structure and RNA-protein interactions in purified yeast U6 snRNPs. , 2006, Journal of molecular biology.

[40]  H. Richly,et al.  Biochemical characterization of a U6 small nuclear RNA-specific terminal uridylyltransferase. , 2003, European journal of biochemistry.

[41]  M. Mörl,et al.  A universal method to produce in vitro transcripts with homogeneous 3' ends. , 2002, Nucleic acids research.

[42]  A. Bindereif,et al.  p110, a novel human U6 snRNP protein and U4/U6 snRNP recycling factor , 2002, The EMBO journal.

[43]  M. Wilm,et al.  A doughnut‐shaped heteromer of human Sm‐like proteins binds to the 3′‐end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro , 1999, The EMBO journal.

[44]  Bernd-Joachim Benecke,et al.  A highly specific terminal uridylyl transferase modifies the 3'-end of U6 small nuclear RNA , 1998, Nucleic Acids Res..

[45]  C. Guthrie,et al.  A spliceosomal recycling factor that reanneals U4 and U6 small nuclear ribonucleoprotein particles. , 1998, Science.

[46]  C. Guthrie,et al.  Evidence for a Prp24 binding site in U6 snRNA and in a putative intermediate in the annealing of U6 and U4 snRNAs. , 1995, The EMBO journal.

[47]  J. Steitz,et al.  Association of the lupus antigen La with a subset of U6 snRNA molecules. , 1985, Nucleic acids research.