Granular contact dynamics using mathematical programming methods

A class of variational formulations for discrete element analysis of granular media is presented. These formulations lead naturally to convex mathematical programs that can be solved using standard and readily available tools. In contrast to traditional discrete element analysis, the present granular contact dynamics formulation uses an implicit time discretization, thus allowing for large time steps. Moreover, in the limit of an infinite time step, the general dynamic formulation reduces to a static formulation that is useful in simulating common quasi-static problems such as triaxial tests and similar laboratory experiments. A significant portion of the paper is dedicated to exploring the consequences of the associated frictional sliding rule implied by the variational formulation adopted. In this connection, a new interior-point algorithm for general linear complementarity problems is developed and it is concluded that the associated sliding rule, in the context of granular contact dynamics, may be viewed as an artifact of the time discretization and that the use of an associated flow rule at the particle scale level generally is physically acceptable.

[1]  M. Anitescu,et al.  A Convex Complementarity Approach for Simulating Large Granular Flows , 2010 .

[2]  Scott W. Sloan,et al.  Three-dimensional Mohr-Coulomb limit analysis using semidefinite programming , 2007 .

[3]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[4]  E. J. Hinch,et al.  Study of the collapse of granular columns using two-dimensional discrete-grain simulation , 2005, Journal of Fluid Mechanics.

[5]  F. Radjai,et al.  Identification of rolling resistance as a shape parameter in sheared granular media. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  H. Huppert,et al.  Axisymmetric collapses of granular columns , 2004, Journal of Fluid Mechanics.

[7]  Scott W. Sloan,et al.  A new discontinuous upper bound limit analysis formulation , 2005 .

[8]  Per Lötstedt Coulomb Friction in Two-Dimensional Rigid Body Systems , 1981 .

[9]  S. Sloan,et al.  Formulation and solution of some plasticity problems as conic programs , 2007 .

[10]  Vincent Richefeu,et al.  Contact dynamics as a nonsmooth discrete element method , 2009 .

[11]  Robert J. Vanderbei,et al.  Linear Programming: Foundations and Extensions , 1998, Kluwer international series in operations research and management service.

[12]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[13]  José Herskovits,et al.  An iterative algorithm for limit analysis with nonlinear yield functions , 1993 .

[14]  Mike Sandiford,et al.  A new strategy for discrete element numerical models: 2. Sandbox applications , 2007 .

[15]  S. Nash,et al.  Linear and Nonlinear Programming , 1987 .

[16]  Johan Clausen,et al.  EXISTENCE AND UNIQUENESS OF SOLUTIONS IN NONASSOCIATED MOHR-COULOMB ELASTOPLASTICITY , 2008 .

[17]  R. Kerswell,et al.  Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity. , 2008, Physical review letters.

[18]  D. Owen,et al.  Computational methods for plasticity : theory and applications , 2008 .

[19]  Mihai Anitescu,et al.  An iterative approach for cone complementarity problems for nonsmooth dynamics , 2010, Comput. Optim. Appl..

[20]  David L. Egholm,et al.  A new strategy for discrete element numerical models: 1. Theory , 2007 .

[21]  Erling D. Andersen,et al.  On implementing a primal-dual interior-point method for conic quadratic optimization , 2003, Math. Program..

[22]  Farhang Radjai,et al.  Rheology, force transmission, and shear instabilities in frictional granular media from biaxial numerical tests using the contact dynamics method , 2005 .

[23]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[24]  Michel Saint Jean,et al.  The non-smooth contact dynamics method , 1999 .

[25]  M. Manzari,et al.  SIGNIFICANCE OF SOIL DILATANCY IN SLOPE STABILITY ANALYSIS. TECHNICAL NOTE , 2000 .

[26]  Alexander Ries,et al.  Shear zones in granular media: three-dimensional contact dynamics simulation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Sean McNamara,et al.  Measurement of indeterminacy in packings of perfectly rigid disks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Pierre-Yves Lagrée,et al.  The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology , 2011, Journal of Fluid Mechanics.

[29]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[30]  Jean-Pierre Vilotte,et al.  Spreading of a granular mass on a horizontal plane , 2004 .

[31]  Tami C. Bond,et al.  Export efficiency of black carbon aerosol in continental outflow: Global implications , 2005 .

[32]  Scott W. Sloan,et al.  Associated computational plasticity schemes for nonassociated frictional materials , 2012 .

[33]  Kristian Krabbenhoft,et al.  A general non‐linear optimization algorithm for lower bound limit analysis , 2003 .

[34]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[35]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[36]  Pierre Alart,et al.  A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media , 2004 .

[37]  Mihai Anitescu,et al.  A constraint‐stabilized time‐stepping approach for rigid multibody dynamics with joints, contact and friction , 2004 .

[38]  Mihai Anitescu,et al.  A computational study of the use of an optimization-based method for simulating large multibody systems , 2009, Optim. Methods Softw..

[39]  F. Donze,et al.  Advances in Discrete Element Method Applied to Soil, Rock and Concrete Mechanics , 2009 .

[40]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[41]  Y. Leroy,et al.  Predicting stress distributions in fold‐and‐thrust belts and accretionary wedges by optimization , 2009 .

[42]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[43]  P. Mora,et al.  Numerical simulation of faults and shear zones , 1994 .

[44]  Rich R. Kerswell,et al.  Planar collapse of a granular column: Experiments and discrete element simulations , 2008 .

[45]  F. Tin-Loi,et al.  An iterative complementarity approach for elastoplastic analysis involving frictional contact , 2003 .

[46]  Andrei V. Lyamin,et al.  Computational Cam clay plasticity using second-order cone programming , 2012 .

[47]  R. Kerswell,et al.  Dam break with Coulomb friction: a model for granular slumping , 2005 .

[48]  Alfredo Edmundo Huespe,et al.  A nonlinear optimization procedure for limit analysis , 1996 .

[49]  R. Luciano,et al.  Stress-penalty method for unilateral contact problems: mathematical formulation and computational aspects , 1994 .

[50]  Roberto Zenit,et al.  Computer simulations of the collapse of a granular column , 2005 .

[51]  F. Pfeiffer,et al.  Numerical aspects of non-smooth multibody dynamics , 2006 .

[52]  E. J. Hinch,et al.  The spreading of a granular mass: role of grain properties and initial conditions , 2006 .

[53]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[54]  M. Anitescu,et al.  A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics , 2011 .

[55]  Rodrigo Salgado,et al.  Bearing capacity of strip and circular footings in sand using finite elements , 2009 .

[56]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[57]  D. Stewart Convergence of a Time‐Stepping Scheme for Rigid‐Body Dynamics and Resolution of Painlevé's Problem , 1998 .

[58]  Eric Vincens,et al.  Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis , 2003 .

[59]  Jean-Pierre Vilotte,et al.  On the use of Saint Venant equations to simulate the spreading of a granular mass , 2005 .

[60]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .

[61]  B. Brogliato,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[62]  Roux,et al.  Force Distributions in Dense Two-Dimensional Granular Systems. , 1996, Physical review letters.

[63]  Gert Lube,et al.  Collapses of two-dimensional granular columns. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  Michael C. Ferris,et al.  A Comparison of Large Scale Mixed Complementarity Problem Solvers , 1997, Comput. Optim. Appl..

[65]  Mihai Anitescu,et al.  Optimization-based simulation of nonsmooth rigid multibody dynamics , 2006, Math. Program..

[66]  M. Anitescu,et al.  Formulating Dynamic Multi-Rigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems , 1997 .

[67]  Pierre-Etienne Gautier,et al.  Modelling ballast behaviour under dynamic loading. Part 1: A 2D polygonal discrete element method approach , 2006 .

[68]  Y. Leroy,et al.  Failure in accretionary wedges with the maximum strength theorem: numerical algorithm and 2D validation , 2010 .