Effect of extrusion cooking process parameters on the retention of bilberry anthocyanins in starch based food

[1]  Margaret A. Brennan,et al.  Ready‐to‐eat snack products: the role of extrusion technology in developing consumer acceptable and nutritious snacks , 2013 .

[2]  A. Plunkett,et al.  The use of fruit powders in extruded snacks suitable for Children's diets , 2013 .

[3]  M. Azad Emin,et al.  Retention of β-carotene as a model substance for lipophilic phytochemicals during extrusion cooking , 2012 .

[4]  S. Hamdi,et al.  Review of the effects of food processing and formulation on flavonol and anthocyanin behaviour , 2012 .

[5]  Brijesh K. Tiwari,et al.  Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods , 2011 .

[6]  B. Zhang,et al.  Mechanochemistry in thermomechanical processing of foods: kinetic aspects. , 2011, Journal of food science.

[7]  I. V. D. Plancken,et al.  Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries , 2010 .

[8]  Sergio O. Serna-Saldívar,et al.  Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking , 2010 .

[9]  L. Howard,et al.  Effect of heating on the stability of grape and blueberry pomace procyanidins and total anthocyanins , 2010 .

[10]  Brittany L. White,et al.  Polyphenolic composition and antioxidant capacity of extruded cranberry pomace. , 2010, Journal of agricultural and food chemistry.

[11]  M. Giusti,et al.  Anthocyanins: natural colorants with health-promoting properties. , 2010, Annual review of food science and technology.

[12]  Peter J. Halley,et al.  Mechanism of Degradation of Starch, a Highly Branched Polymer, during Extrusion , 2010 .

[13]  M. Dornier,et al.  Kinetics of anthocyanin degradation and browning in reconstituted blackberry juice treated at high temperatures (100-180 degrees C). , 2010, Journal of agricultural and food chemistry.

[14]  H. E. Gharras Polyphenols: food sources, properties and applications – a review , 2009 .

[15]  P. Kroon,et al.  The bioactivity of dietary anthocyanins is likely to be mediated by their degradation products. , 2009, Molecular nutrition & food research.

[16]  C. Brownmiller,et al.  Influence of extrusion processing on procyanidin composition and total anthocyanin contents of blueberry pomace. , 2009, Journal of food science.

[17]  Muhammad Asif,et al.  Stability of Vitamins during Extrusion , 2009, Critical reviews in food science and nutrition.

[18]  D. J. Morgan,et al.  Determination of the degradation kinetics of anthocyanins in a model juice system using isothermal and non-isothermal methods , 2008 .

[19]  H. Schuchmann,et al.  Bestimmung der Verweilzeitverteilung bei der Kochextrusion von Maisgrieß in einem Hochgeschwindigkeitsextruder , 2008 .

[20]  E. Berghofer,et al.  Kinetics of Thermomechanical Destruction of Thiamin During Extrusion Cooking , 2008 .

[21]  J. Cheftel,et al.  Thiamine destruction during extrusion cooking as an indicator of the intensity of thermal processing , 2007 .

[22]  M. Özkan,et al.  Effects of temperature, solid content and pH on the stability of black carrot anthocyanins , 2007 .

[23]  M. Camire,et al.  Functionality of fruit powders in extruded corn breakfast cereals , 2007 .

[24]  H. Dietrich,et al.  Der Monomerindex : Eine schnelle und kostengünstige Methode zur Bestimmung von Anthocyanen und Anthocyanaddukten in Buntsäften, Nektaren, Konzentraten und Rotweinen , 2006 .

[25]  M. Hanna,et al.  A Review on Residence Time Distribution (RTD) in Food Extruders and Study on the Potential of Neural Networks in RTD Modeling , 2002 .

[26]  C. Rice-Evans,et al.  Antioxidant activity applying an improved ABTS radical cation decolorization assay. , 1999, Free radical biology & medicine.

[27]  R. Lamuela-Raventós,et al.  Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent , 1999 .