Noisy metrology: a saturable lower bound on quantum Fisher information

In order to provide a guaranteed precision and a more accurate judgement about the true value of the Cramér-Rao bound and its scaling behavior, an upper bound (equivalently a lower bound on the quantum Fisher information) for precision of estimation is introduced. Unlike the bounds previously introduced in the literature, the upper bound is saturable and yields a practical instruction to estimate the parameter through preparing the optimal initial state and optimal measurement. The bound is based on the underling dynamics, and its calculation is straightforward and requires only the matrix representation of the quantum maps responsible for encoding the parameter. This allows us to apply the bound to open quantum systems whose dynamics are described by either semigroup or non-semigroup maps. Reliability and efficiency of the method to predict the ultimate precision limit are demonstrated by three main examples.

[1]  C Langer,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[2]  M. Hübner Explicit computation of the Bures distance for density matrices , 1992 .

[3]  Akio Fujiwara,et al.  Quantum channel identification problem , 2001 .

[4]  W. Dur,et al.  Optimal quantum states for frequency estimation , 2014, 1402.6946.

[5]  Katarzyna Macieszczak The Zeno limit in frequency estimation with non-Markovian environments , 2014 .

[6]  K. Banaszek,et al.  Quantum phase estimation with lossy interferometers , 2009, 0904.0456.

[7]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[8]  L. Davidovich,et al.  Quantum metrological limits via a variational approach. , 2012, Physical review letters.

[9]  Alexander Semenovich Holevo,et al.  Covariant quantum Markovian evolutions , 1996 .

[10]  U. Dorner,et al.  Quantum frequency estimation with trapped ions and atoms , 2011, 1102.1361.

[11]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[12]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[13]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[14]  A. S. Khorashad,et al.  Enhancement of frequency estimation by spatially correlated environments , 2015, 1508.01990.

[15]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[16]  G. Adesso,et al.  Practical quantum metrology in noisy environments , 2016, 1604.00532.

[17]  C. Helstrom Quantum detection and estimation theory , 1969 .

[18]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[19]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[20]  H. M. Wiseman,et al.  Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements , 2008, 0809.3308.

[21]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[22]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[23]  Hiroshi Imai,et al.  A fibre bundle over manifolds of quantum channels and its application to quantum statistics , 2008 .

[24]  Joseph Fitzsimons,et al.  Magnetic field sensing beyond the standard quantum limit under the effect of decoherence , 2011, 1101.2561.

[25]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[26]  Jan Kolodynski,et al.  Efficient tools for quantum metrology with uncorrelated noise , 2013, 1303.7271.

[27]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[28]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[29]  K J Resch,et al.  Time-reversal and super-resolving phase measurements. , 2007, Physical review letters.

[30]  Margaret Nichols Trans , 2015, De-centering queer theory.

[31]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[32]  Brian J. Smith,et al.  Optimal quantum phase estimation. , 2008, Physical review letters.

[33]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[34]  A. Rezakhani,et al.  Quantum metrology in open systems: dissipative Cramér-Rao bound. , 2013, Physical review letters.

[35]  Alexander Semenovich Holevo,et al.  A note on covariant dynamical semigroups , 1993 .

[36]  G. R. Jin,et al.  Quantum Fisher information of entangled coherent states in the presence of photon loss , 2013, 1307.7353.

[37]  J. Kołodyński,et al.  Quantum limits in optical interferometry , 2014, 1405.7703.

[38]  Andrea Smirne,et al.  Ultimate Precision Limits for Noisy Frequency Estimation. , 2015, Physical review letters.

[39]  C. F. Roos,et al.  ‘Designer atoms’ for quantum metrology , 2006, Nature.

[40]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[41]  A. del Campo,et al.  Nonlinear Quantum Metrology of Many-Body Open Systems. , 2016, Physical review letters.

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  D. Bures An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .

[44]  C. P. Sun,et al.  Quantum Fisher information flow and non-Markovian processes of open systems , 2009, 0912.0587.