On the Numerical Simulation of Viscoplastic Fluid Flow

Publisher Summary This chapter provides an overview of the main mathematical and computational aspects of viscoplasticity. It discusses Bingham flow in cylinders and cavities; the numerical simulation of nonisothermal, compressible, and thixotropic viscoplastic flow, which is an augmented Lagrangian finite-volume approach; the application of fictitious domain; and methods for the numerical simulation of viscoplastic flow. Among the various classes of non-Newtonian materials, those exhibiting viscoplastic properties are particularly interesting in accordance with their ability to strain only if the stress intensity exceeds a minimum value. Many industrial processes involve viscoplastic fluids. The chapter mentions only a few of them—namely, mud, cement slurries, food, waxy crude oils, suspensions, emulsions, foams, etc. In a viscoplastic fluid flow, the flow pattern highlights two kinds of regions: the regions where the stress intensity exceeds the yield stress and the regions where it does not. The former and latter regions are usually called the “yielded” and “unyielded” regions, respectively. The most commonly encountered viscoplastic model is the Bingham fluid.

[1]  David V. Boger,et al.  Flow characteristics of waxy crude oils: Application to pipeline design , 1991 .

[2]  B. Klein,et al.  Particle movement in non-Newtonian slurries: the effect of yield stress on dense medium separation , 2001 .

[3]  R. Glowinski,et al.  Constrained optimization in seismic reflection tomography: a Gauss-Newton augmented Lagrangian approach , 2006 .

[4]  P. Jay,et al.  Sphere drag in a viscoplastic fluid , 2004 .

[5]  Roland Glowinski,et al.  Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach , 2003 .

[6]  I. Frigaard,et al.  Static wall layers in the displacement of two visco-plastic fluids in a plane channel , 2000, Journal of Fluid Mechanics.

[7]  Ian A. Frigaard,et al.  Start-up transients and efficient computation of isothermal waxy crude oil flows , 2007 .

[8]  Evan Mitsoulis,et al.  Creeping motion of a sphere in tubes filled with a Bingham plastic material , 1997 .

[9]  Ian A. Frigaard,et al.  Visco-plastic fluids: From Theory to Application , 2007 .

[10]  M. Sharif,et al.  Numerical modeling of helical flow of viscoplastic fluids in eccentric annuli , 2000 .

[11]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[12]  Ian A. Frigaard,et al.  Numerical solution of duct flows of multiple visco-plastic fluids , 2004 .

[13]  E. Mitsoulis,et al.  Flow simulation of herschel‐bulkley fluids through extrusion dies , 1993 .

[14]  Ronald H. W. Hoppe,et al.  Coupled problems on stationary non-isothermal flow of electrorheological fluids , 2005 .

[15]  Ian A. Frigaard,et al.  On the stability of Poiseuille flow of a Bingham fluid , 1994, Journal of Fluid Mechanics.

[16]  M. F. Webster,et al.  Computation of incompressible and weakly-compressible viscoelastic liquids flow: finite element/volume schemes , 2005 .

[17]  K. Ravi,et al.  Investigation of Drilling Fluid Properties To Maximize Cement Displacement Efficiency , 1991 .

[18]  Roland Glowinski,et al.  Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity , 2006, J. Comput. Phys..

[19]  T. N. Smith,et al.  Motion of spherical particles in a Bingham plastic , 1967 .

[20]  Roland Glowinski,et al.  Constrained motion problems with applications by nonlinear programming methods , 1995 .

[21]  R. Glowinski,et al.  An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. , 2006 .

[22]  I. Frigaard,et al.  On the usage of viscosity regularisation methods for visco-plastic fluid flow computation , 2005 .

[23]  E. Mitsoulis On creeping drag flow of a viscoplastic fluid past a circular cylinder: wall effects , 2004 .

[24]  Zhenjiang You,et al.  Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids , 2005 .

[25]  C. Desaubry,et al.  Numerical and experimental investigation of thermal convection for a thermodependent Herschel-Bulkley fluid in an annular duct with rotating inner cylinder , 1998 .

[26]  R. Glowinski,et al.  OPERATOR-SPLITTING METHODS FOR THE SIMULATION OF BINGHAM VISCO-PLASTIC FLOW , 2002 .

[27]  H. C. Yee,et al.  Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations. [in gas dynamics , 1985 .

[28]  Howard H. Hu,et al.  Direct numerical simulations of fluid-solid systems using the arbitrary Langrangian-Eulerian technique , 2001 .

[29]  C. Desaubry,et al.  Laminar mixed convection in a horizontal annular duct. Case of thermodependent non-Newtonian fluid , 2000 .

[30]  Numerical simulation of compressible viscoelastic liquids , 2004 .

[31]  The Prediction Of Oil Gelation In Submarine Pipelines And The Pressure Required For Restarting Flow , 1978 .

[32]  Jamshid M. Nouri,et al.  Flow of Newtonian and Non-Newtonian Fluids in a Concentric Annulus With Rotation of the Inner Cylinder , 1994 .

[33]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[34]  R. Temam Navier-Stokes Equations , 1977 .

[35]  Roland Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for viscoelastic particulate flows , 2000 .

[36]  Anthony Wachs,et al.  A fictitious domain method for dynamic simulation of particle sedimentation in Bingham fluids , 2007 .

[37]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[38]  John Tsamopoulos,et al.  Creeping motion of a sphere through a Bingham plastic , 1985, Journal of Fluid Mechanics.

[39]  Wook Ryol Hwang,et al.  Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames , 2004 .

[40]  J. Tsamopoulos,et al.  Transient displacement of a viscoplastic material by air in straight and suddenly constricted tubes , 2003 .

[41]  Rheology of Waxy Crude Oils , 1988 .

[42]  P. P. Mosolov,et al.  Variational methods in the theory of the fluidity of a viscous-plastic medium , 1965 .

[43]  Gilmer R. Burgos,et al.  Flow development of Herschel–Bulkley fluids in a sudden three-dimensional square expansion , 1999 .

[44]  G. Vinay,et al.  Numerical simulation of weakly compressible Bingham flows: The restart of pipeline flows of waxy crude oils , 2006 .

[45]  O. Hassager,et al.  Flow of viscoplastic fluids in eccentric annular geometries , 1992 .

[46]  I. Frigaard,et al.  Yield stress effects on Rayleigh–Bénard convection , 2006, Journal of Fluid Mechanics.

[47]  Q. D. Nguyen,et al.  A model for restart of a pipeline with compressible gelled waxy crude oil , 2004 .

[48]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[49]  Patrick Hild,et al.  The blocking of an inhomogeneous Bingham fluid.Applications to landslides , 2002 .

[50]  The Effects of Yield Stress Variation on Uniaxial Exchange Flows of Two Bingham Fluids in a Pipe , 2000, SIAM J. Appl. Math..

[51]  F. J. Sánchez Application of a First-Order Operator Splitting Method to Bingham Fluid Flow Simulation , 1998 .

[52]  LieJune Shiau,et al.  On the numerical simulation of friction constrained motions , 2005 .

[53]  O. Pironneau,et al.  Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .

[54]  Roger I. Tanner,et al.  Numerical analysis of three-dimensional Bingham plastic flow , 1992 .

[55]  E. Mitsoulis,et al.  Entry flows of Bingham plastics in expansions , 2004 .

[56]  Jamshid M. Nouri,et al.  Flow of Newtonian and non-Newtonian fluids in concentric and eccentric annuli , 1993, Journal of Fluid Mechanics.

[57]  Roland Glowinski,et al.  Direct numerical simulation of pattern formation in a rotating suspension of non-Brownian settling particles in a fully filled cylinder , 2007 .

[58]  Evan Mitsoulis,et al.  Entry and exit flows of Bingham fluids , 1992 .

[59]  Nhan Phan-Thien,et al.  Dynamic simulation of sphere motion in a vertical tube , 2004, Journal of Fluid Mechanics.

[60]  R. Byron Bird,et al.  The Rheology and Flow of Viscoplastic Materials , 1983 .

[61]  Evan Mitsoulis,et al.  Flow of Bingham plastics in a lid-driven square cavity , 2001 .

[62]  S. Muller,et al.  Convergence of a Regularization Method for Creeping Flow of a Bingham Material About a Rigid Sphere , 2002 .

[63]  Evan Mitsoulis,et al.  Creeping motion of a sphere in tubes filled with Herschel–Bulkley fluids , 1997 .

[64]  Yongqi Wang,et al.  Comparisons of numerical methods with respect to convectively dominated problems , 2001 .

[65]  Howard A. Barnes,et al.  The yield stress myth? , 1985 .

[66]  Ian A. Frigaard,et al.  Uniaxial exchange flows of two Bingham fluids in a cylindrical duct , 1998 .

[67]  par J. Cea,et al.  Methodes numeriques pour i'ecoulement laminaire d'un fluide rigide viscoplastique incompressible , 1972 .

[68]  Anthony Wachs,et al.  Numerical simulation of steady Bingham flow through an eccentric annular cross-section by distributed Lagrange multiplier/fictitious domain and augmented Lagrangian methods , 2007 .

[69]  Roland Glowinski,et al.  A fictitious domain/distributed Lagrange multiplier method for the particulate flow of Oldroyd-B fluids: A positive definiteness preserving approach , 2009 .

[70]  Nhan Phan-Thien,et al.  Viscoelastic mobility problem of a system of particles , 2002 .

[71]  Roland Glowinski,et al.  On the numerical simulation of Bingham visco-plastic flow: Old and new results , 2007 .

[72]  M. Y. Dedegil Drag Coefficient and Settling Velocity of Particles in Non-Newtonian Suspensions , 1987 .

[73]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[74]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[75]  J. Lions,et al.  Transfert de chaleur dans un fluide de Bingham dont la viscosité dépend de la température , 1972 .

[76]  R.H.W. Hoppe,et al.  PROBLEMS ON ELECTRORHEOLOGICAL FLUID FLOWS , 2003 .

[77]  Roland Glowinski,et al.  Steady Bingham fluid flow in cylindrical pipes: a time dependent approach to the iterative solution , 2000, Numer. Linear Algebra Appl..

[78]  Pierre Saramito,et al.  An adaptive finite element method for Bingham fluid flows around a cylinder , 2003 .

[79]  J. Oldroyd,et al.  Two-dimensional plastic flow of a Bingham solid , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[80]  H. Rønningsen Rheological behaviour of gelled, waxy North Sea crude oils , 1992 .

[81]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[82]  Pierre Saramito,et al.  An adaptive finite element method for viscoplastic fluid flows in pipes , 2001 .

[83]  Philippe Coussot,et al.  Thixotropy modelling at local and macroscopic scales , 2004 .

[84]  S. H. Bittleston,et al.  The axial flow of a Bingham plastic in a narrow eccentric annulus , 1991, Journal of Fluid Mechanics.

[85]  Manoj V. Modi,et al.  Engineering Solutions to Handle Waxy Kakap KRA Crude , 1994 .

[86]  R. P. Chhabra,et al.  Creeping sphere motion in Herschel-Bulkley fluids: flow field and drag , 1995 .

[87]  T. Papanastasiou Flows of Materials with Yield , 1987 .

[88]  Roland Glowinski,et al.  Operator-Splitting Methods and Applications to the Direct Numerical Simulation of Particulate Flow and to the Solution of the Elliptic Monge-Ampere Equation , 2005 .

[89]  The blocking property in the study of the Bingham fluid , 1986 .

[90]  Yuri A. Kuznetsov,et al.  On a Conjugate Gradient/Newton/Penalty Method for the Solution of Obstacle Problems. Application to the Solution of an Eikonal System with Dirichlet Boundary Conditions , 2004 .

[91]  David V. Boger,et al.  Measurement of the unique flow properties of waxy crude oils , 1987 .

[92]  Yannick Peysson,et al.  Solid/Liquid Dispersions in Drilling and Production , 2004 .

[93]  Evan Mitsoulis,et al.  Viscoplastic flow around a cylinder kept between parallel plates , 2002 .

[94]  Michel Bercovier,et al.  A finite-element method for incompressible non-Newtonian flows , 1980 .

[95]  Q. D. Nguyen,et al.  Isothermal start-up of pipeline transporting waxy crude oil , 1999 .

[96]  D. Vola,et al.  Laminar unsteady flows of Bingham fluids: a numerical strategy and some benchmark results , 2003 .

[97]  T. K. Perkins,et al.  STARTING BEHAVIOR OF GATHERING LINES AND PIPELINES WHEN FILLED WITH GELLED PRUDHOE BAY OIL , 1971 .

[98]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[99]  M. A. Hyman,et al.  Non-iterative numerical solution of boundary-value problems , 1952 .

[100]  J. H Heinbockel Numerical Methods for Scientific Computing , 2004 .

[101]  A. Wachs,et al.  Numerical simulation of particle sedimentation in shear-thinning fluids with a fictitious domain method , 2006 .

[102]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[103]  Roland Glowinski,et al.  Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type , 2006 .

[104]  Howard A. Barnes,et al.  The yield stress—a review or ‘παντα ρει’—everything flows? , 1999 .

[105]  Yuri A. Kuznetsov,et al.  A penalty/Newton/conjugate gradient method for the solution of obstacle problems , 2003 .

[106]  Jean-Claude Latché,et al.  On a numerical strategy to compute gravity currents of non-Newtonian fluids , 2004 .

[107]  Anthony Wachs,et al.  Numerical simulation of non-isothermal viscoplastic waxy crude oil flows , 2005 .

[108]  Jinchao Xu Optimal algorithms for discretized partial differential equations , 2009 .