Steganography using Gibbs random fields

Many steganographic algorithms for empirical covers are designed to minimize embedding distortion. In this work, we provide a general framework and practical methods for embedding with an arbitrary distortion function that does not have to be additive over pixels and thus can consider interactions among embedding changes. The framework evolves naturally from a parallel made between steganography and statistical physics. The Gibbs sampler is the key tool for simulating the impact of optimal embedding and for constructing practical embedding algorithms. The proposed framework reduces the design of secure steganography in empirical covers to the problem of finding suitable local potentials for the distortion function that correlate with statistical detectability in practice. We work out the proposed methodology in detail for a specific choice of the distortion function and validate the approach through experiments.

[1]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[2]  Anindya Sarkar,et al.  Secure Steganography: Statistical Restoration of the Second Order Dependencies for Improved Security , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[3]  Yun Q. Shi,et al.  A Markov Process Based Approach to Effective Attacking JPEG Steganography , 2006, Information Hiding.

[4]  Tomás Pevný,et al.  The square root law of steganographic capacity , 2008, MM&Sec '08.

[5]  Petra Mutzel,et al.  A Graph-Theoretic Approach to Steganography , 2005, Communications and Multimedia Security.

[6]  Anindya Sarkar,et al.  Estimation of optimum coding redundancy and frequency domain analysis of attacks for YASS - a randomized block based hiding scheme , 2008, 2008 15th IEEE International Conference on Image Processing.

[7]  Tomás Pevný,et al.  Modern steganalysis can detect YASS , 2010, Electronic Imaging.

[8]  Tomás Pevný,et al.  Using High-Dimensional Image Models to Perform Highly Undetectable Steganography , 2010, Information Hiding.

[9]  Tsachy Weissman,et al.  Erasure Entropy , 2006, 2006 IEEE International Symposium on Information Theory.

[10]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[11]  Jessica J. Fridrich,et al.  Gibbs Construction in Steganography , 2010, IEEE Transactions on Information Forensics and Security.

[12]  Tomás Pevný,et al.  Merging Markov and DCT features for multi-class JPEG steganalysis , 2007, Electronic Imaging.

[13]  Hyoung Joong Kim,et al.  Less detectable JPEG steganography method based on heuristic optimization and BCH syndrome coding , 2009, MM&Sec '09.

[14]  Jessica J. Fridrich,et al.  Writing on wet paper , 2005, IEEE Transactions on Signal Processing.

[15]  Dana S. Richards,et al.  Modified Matrix Encoding Technique for Minimal Distortion Steganography , 2006, Information Hiding.

[16]  Tsachy Weissman,et al.  The Information Lost in Erasures , 2008, IEEE Transactions on Information Theory.

[17]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[18]  Jessica J. Fridrich,et al.  Minimizing Additive Distortion in Steganography Using Syndrome-Trellis Codes , 2011, IEEE Transactions on Information Forensics and Security.

[19]  Michael J. Black,et al.  Fields of Experts , 2009, International Journal of Computer Vision.

[20]  B. S. Manjunath,et al.  Provably Secure Steganography: Achieving Zero K-L Divergence using Statistical Restoration , 2006, 2006 International Conference on Image Processing.

[21]  Tomás Pevný,et al.  Steganalysis by subtractive pixel adjacency matrix , 2010, IEEE Trans. Inf. Forensics Secur..

[22]  Mauro Barni,et al.  MPSteg-color: A New Steganographic Technique for Color Images , 2007, Information Hiding.

[23]  Phil Sallee,et al.  Model-Based Methods For Steganography And Steganalysis , 2005, Int. J. Image Graph..

[24]  Jessica J. Fridrich,et al.  The square root law of steganographic capacity for Markov covers , 2009, Electronic Imaging.

[25]  Leszek Wojnar,et al.  Image Analysis , 1998 .

[26]  Andrew D. Ker Steganalysis of LSB matching in grayscale images , 2005, IEEE Signal Processing Letters.

[27]  B. Carlin,et al.  Diagnostics: A Comparative Review , 2022 .

[28]  Andrew D. Ker Batch Steganography and Pooled Steganalysis , 2006, Information Hiding.

[29]  Jessica J. Fridrich,et al.  Minimizing embedding impact in steganography using trellis-coded quantization , 2010, Electronic Imaging.

[30]  Jessica J. Fridrich,et al.  Maximum likelihood estimation of length of secret message embedded using ±k steganography in spatial domain , 2005, IS&T/SPIE Electronic Imaging.

[31]  Yun Q. Shi,et al.  JPEG image steganalysis utilizing both intrablock and interblock correlations , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[32]  Jessica J. Fridrich,et al.  On completeness of feature spaces in blind steganalysis , 2008, MM&Sec '08.

[33]  D. Landau,et al.  Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Gerhard Winkler,et al.  Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction , 2002 .

[35]  Tomás Pevný,et al.  Statistically undetectable jpeg steganography: dead ends challenges, and opportunities , 2007, MM&Sec.