Design of Biochemical Reactors Mass Transfer Criteria for Simple and Complex Systems

Biochemical reactors are treated as heterogeneous catalytic reactors in which physical mass transfer completely or significantly controls the overall rate of the process being promoted in the reactor. The treatment used to develop basic design strategies takes into account the special constraints imposed by biological and biochemical phenomena on the systems.

[1]  T. W. F. Russell,et al.  The tubular loop batch fermentor: Basic concepts , 1974 .

[2]  G. Batchelor,et al.  Pressure fluctuations in isotropic turbulence , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  W. Deckwer,et al.  Mixing and mass transfer in tall bubble columns , 1974 .

[4]  C. Tien,et al.  Creeping flow of power‐law fluid over newtonian fluid sphere , 1968 .

[5]  John Happel,et al.  Viscous flow in multiparticle systems: Slow motion of fluids relative to beds of spherical particles , 1958 .

[6]  N. Kossen,et al.  The growth of molds in the form of pellets–a literature review , 1977 .

[7]  L. Kempe,et al.  Influence of surface active agents on oxygen absorption to the free interface in a stirred fermentor , 1971 .

[8]  L. Fan,et al.  Oxygen transfer to mixed cultures in tower systems , 1975 .

[9]  M. Alexander,et al.  GROWTH CHARACTERISTICS OF FUNGI AND ACTINOMYCETES , 1960, Journal of bacteriology.

[10]  L. Fan,et al.  Pressure drop, gas hold‐up, and oxygen transfer in tower systems , 1977 .

[11]  N. Blakebrough,et al.  Mass transfer and mixing rates in fermentation vessels , 1966 .

[12]  J. Davidson,et al.  The effect of surface active agents on the rate of absorption of carbon dioxide by water , 1956 .

[13]  Kazuo Endoh,et al.  Power Characteristics of Gas-Liquid Contacting Mixers , 1955 .

[14]  F. Yoshida,et al.  Performance of gas bubble columns: Volumetric liquid‐phase mass transfer coefficient and gas holdup , 1965 .

[15]  M. Moo-young,et al.  Generalized expressions for gas absorption rates in bubbles , 1970 .

[16]  Charles N. Satterfield,et al.  Mass transfer in heterogeneous catalysis , 1969 .

[17]  W. Resnick,et al.  Mass transfer from gas bubbles in an agitated vessel with and without simultaneous chemical reaction , 1964 .

[18]  John Howard Perry,et al.  Chemical Engineers' Handbook , 1934 .

[19]  G. A. Hughmark,et al.  Holdup and Mass Transfer in Bubble Columns , 1967 .

[20]  M. L. Wasserman,et al.  Upper and lower bounds on the drag coefficient of a sphere in a power‐model fluid , 1964 .

[21]  M. J. Johnson Aerobic Microbial Growth at Low Oxygen Concentrations , 1967, Journal of Bacteriology.

[22]  B. Gal-or,et al.  Hydrodynamics of an ensemble of drops (or bubbles) in the presence or absence of surfactants , 1968 .

[23]  M. Moo-young,et al.  The continuous phase heat and mass transfer properties of dispersions , 1961 .

[24]  P. Calderbank,et al.  Mass transfer coefficients, velocities and shapes of carbon dioxide bubbles in free rise through distilled water , 1964 .

[25]  Klaas R. Westerterp,et al.  The residence time distribution of the gas in an agitated gas-liquid contactor , 1963 .

[26]  J. J. Janssen,et al.  The influence of suspended solid material on the gas-liquid mass transfer in stirred gas-liquid contactors , 1977 .

[27]  S. Aiba,et al.  Comments on oxygen transfer within a mold pellet. , 1971, Biotechnology and bioengineering.

[28]  M. Moo-Young,et al.  Heat transfer rates to newtonian fluids in aUSn anchor-agitated kettle , 1969 .

[29]  M. Moo-Young,et al.  Degradation of polysaccharides by endo and exo enzymes: A theoretical analysis , 1975 .

[30]  G. Hamer,et al.  Turbine impellers as gas‐liquid contacting devices , 1963 .

[31]  S. A. Miller,et al.  Power requirements of gas‐liquid agitated systems , 1962 .

[32]  H. Blanch,et al.  Non‐Newtonian fermentation broths: Rheology and mass transfer , 1976, Biotechnology and bioengineering.

[33]  L. A. Bromley,et al.  COMPUTER ESTIMATION OF HEAT AND FREE ENERGY OF FORMATION FOR SIMPLE INORGANIC COMPOUNDS , 1963 .

[34]  Takeshi Kobayashi,et al.  Oxygen transfer into mycelial pellets , 1966, Biotechnology and Bioengineering.

[35]  S. A. Miller,et al.  Performance of Agitated Gas-Liquid Contactors , 1944 .

[36]  M. Moo-young,et al.  Kinetics of enzymatic hydrolysis of cellulose: Analytical description of a mechanistic model , 1978, Biotechnology and bioengineering.

[37]  M. Moo-young Microbial reactor design for synthetic protein production , 1975 .

[38]  M. Moo-young,et al.  The rheological effects of substrate-additives on fermentation yields. , 1969, Biotechnology and bioengineering.

[39]  S. Pirt A theory of the mode of growth of fungi in the form of pellets in submerged culture , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[40]  T. W. F. Russell,et al.  REACTOR MODEL PARAMETERS , 1969 .

[41]  E. Katchalski,et al.  A WATER-INSOLUBLE POLYANIONIC DERIVATIVE OF TRYPSIN. II. EFFECT OF THE POLYELECTROLYTE CARRIER ON THE KINETIC BEHAVIOR OF THE BOUND TRYPSIN. , 1964, Biochemistry.

[42]  Larry L. Gasner Development and application of the thin channel rectangular air lift mass transfer reactor to fermentation and waste‐water treatment systems , 1974 .

[43]  Harumi. Kobayashi,et al.  Kinetic studies of α‐galactosidase‐containing mold pellets on PNPG hydrolysis , 1976 .

[44]  A. H. P. Skelland,et al.  Non-Newtonian flow and heat transfer , 1967 .

[45]  J. R. Fair,et al.  Heat Transfer and Gas Holdup in a Sparged Contactor , 1962 .

[46]  W. K. Lewis,et al.  Principles of Gas Absorption. , 1924 .

[47]  M. Moo‐Young,et al.  Enzymatic breakdown of water insoluble substrates , 1975 .

[48]  Norman Blakebrough,et al.  Biochemical and biological engineering science , 1967 .

[49]  A. Acharya,et al.  Mechanics of bubble motion and deformation in non-newtonian media , 1977 .

[50]  M. Moo-young,et al.  Effects of polymer additives on fermentation parameters in a culture of A. niger , 1973 .

[51]  F. Yoshida,et al.  Gas Absorption in Agitated Gas-Liquid Contactors , 1963 .

[52]  J. Schultz,et al.  Sulfite Oxidation as a Measure of Aeration Effectiveness , 1956 .

[53]  R. Foresti,et al.  Agitation of Non-Newtonian Liquids. Power Measurements in the Laminar Region , 1959 .

[54]  A. B. Metzner Agitation of non‐Newtonian fluids , 1957 .

[55]  V. Linek Bestimmung der Phasen-Grenzfläche in einem mit mechanischem Rührwerk versehenen Reaktor bei Gasdurchgang , 1966 .

[56]  R. E. Treybal Mass-Transfer Operations , 1955 .

[57]  A. B. Metzner,et al.  Agitation of viscous Newtonian and non-Newtonian fluids , 1961 .

[58]  C. Wilke,et al.  Simultaneous measurement of interfacial area and mass transfer coefficients for a well—mixed gas dispersion in aqueous electrolyte solutions , 1974 .

[59]  O. C. Sandall,et al.  Gas absorption by non‐Newtonian fluids in agitated vessels , 1974 .

[60]  J. Y. Oldshue,et al.  Fermentation mixing scale‐up techniques , 1966 .

[61]  Kiyomi Akita,et al.  Gas Holdup and Volumetric Mass Transfer Coefficient in Bubble Columns. Effects of Liquid Properties , 1973 .

[62]  V. Mohan,et al.  A theoretical study of pressure drop for non‐Newtonian creeping flow past an assemblage of spheres , 1976 .

[63]  C. H. Lin,et al.  Oxygen transfer and mixing in a tower cycling fermentor , 1976 .

[64]  M. Moo-young,et al.  Gas Absorption Rates at the Free Surface of a Flowing Water Stream. Effects of a Surfactant and of Surface Baffles , 1973 .

[65]  A. Humphrey,et al.  Mass Transfer from Individual Gas Bubbles , 1961 .

[66]  B. Kristiansen,et al.  The Filamentous fungi , 1975 .

[67]  S. Friedlander A note on transport to spheres in stokes flow , 1961 .

[68]  H. Blanch,et al.  Bubble motion and mass transfer in non‐Newtonian fluids: Part I. Single bubble in power law and Bingham fluids , 1978 .

[69]  G. Marrucci,et al.  A theory of coalescence , 1969 .

[70]  D. Meister,et al.  The tubular loop fermentor: Oxygen transfer, growth kinetics and design , 1977, Biotechnology and bioengineering.

[71]  Irving Leibson,et al.  Rate of flow and mechanics of bubble formation from single submerged orifices. I. Rate of flow studies , 1956 .

[72]  M. Moo‐Young,et al.  The blending efficiencies of some impellers in batch mixing , 1972 .

[73]  V. R. Ranade,et al.  Influence of polymer additives on the gas‐liquid mass transfer in stirred tanks , 1978 .

[74]  J. M. Marchello,et al.  Film-penetration model for mass and heat transfer , 1958 .

[75]  Campbell W. Robinson,et al.  Stirred‐tank mechanical power requirement and gas holdup in aerated aqueous phases , 1977 .

[76]  Manish Sharma,et al.  Mass transfer in mechanically agitated gas—liquid contactors , 1971 .

[77]  David F. Ollis,et al.  Biochemical Engineering Fundamentals , 1976 .

[78]  Kenneth B. Bischoff,et al.  Effectiveness factors for general reaction rate forms , 1965 .

[79]  W. J. McManamey,et al.  Mass transfer into simulated fermentation media , 1973 .

[80]  E. L. Gaden,et al.  A continuous, multistage tower fermentor. I. Design and performance tests , 1969 .

[81]  Donald Nelson Miller,et al.  Scale‐up of agitated vessels gas‐liquid mass transfer , 1974 .

[82]  M. Moo-Young,et al.  Bubble drag and mass transfer in non‐newtonian fluids: Creeping flow with power‐law fluids , 1969 .

[83]  E. W. Thiele Relation between Catalytic Activity and Size of Particle , 1939 .

[84]  H. Taguchi,et al.  Power requirement in non‐newtonian fermentation broth , 1966 .

[85]  Y. Tomita On the Fundamental Formula of Non-Newtonian Flow , 1959 .

[86]  P. V. Danckwerts Significance of Liquid-Film Coefficients in Gas Absorption , 1951 .

[87]  Takeshi Kobayashi,et al.  Backmixing and mass transfer in the design of immobilized‐enzyme reactors , 1971 .

[88]  C. Wilke,et al.  Oxygen absorption in stirred tanks: A correlation for ionic strength effects , 1973 .

[89]  J. Lloyd,et al.  Natural Convection Adjacent to Horizontal Surface of Various Planforms , 1974 .

[90]  Kiyomi Akita,et al.  Bubble Size, Interfacial Area, and Liquid-Phase Mass Transfer Coefficient in Bubble Columns , 1974 .

[91]  P. Calderbank,et al.  Mass transfer in the continuous phase around axisymmetric bodies of revolution , 1964 .

[92]  L. Erickson,et al.  Growth models of cultures with two liquid phases. V. Substrate dissolved in dispersed phase—experimental observations , 1971, Biotechnology and bioengineering.

[93]  S. Sideman,et al.  MASS TRANSFER IN GAS-LIQUID CONTACTING SYSTEMS , 1966 .

[94]  T. W. F. Russell Secondary sewage treatment in pipeline contactors , 1972 .

[95]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[96]  Richards Jw Studies in aeration and agitation. , 1961 .

[97]  Fumitake Yoshida,et al.  Gas Absorption by Newtonian and Non-Newtonian Fluids in Sparged Agitated Vessels , 1975 .

[98]  T. W. F. Russell,et al.  The design of gas sparged devices for viscous liquid systems , 1978 .

[99]  Campbell W. Robinson,et al.  Mass-transfer-effective bubble coalescence frequency and specific interfacial area in a mechanically agitated gas-liquid contactor , 1980 .

[100]  M. Moo-Young,et al.  Effectiveness factors for immobilized‐enzyme reactions , 1972 .

[101]  R. Dale,et al.  Polarographic measurement of dissolved oxygen in yeast fermentations. , 1959, Applied microbiology.

[102]  H. Taguchi The nature of fermentation fluids , 1971 .

[103]  M. Moo-young,et al.  Mass transfer from a single bubble in turbulent counter‐current liquid flow , 1973 .

[104]  F. Yoshida,et al.  Oxygen Absorption Rates in Stirred Gas-Liquid Contactors Condensed—complete copy for sale , 1960 .

[105]  S. Narayanan,et al.  Coalescence of two bubbles rising in line at low reynolds numbers , 1974 .

[106]  Takeshi Kobayashi,et al.  The kinetic and mass transfer behavior of immobilized invertase on ion‐exchange resin beads , 1973 .