On the Number of Matroids Compared to the Number of Sparse Paving Matroids

It has been conjectured that sparse paving matroids will eventually predominate in any asymptotic enumeration of matroids, i.e. that $\lim_{n\rightarrow\infty} s_n/m_n = 1$, where $m_n$ denotes the number of matroids on $n$ elements, and $s_n$ the number of sparse paving matroids. In this paper, we show that $$\lim_{n\rightarrow \infty}\frac{\log s_n}{\log m_n}=1.$$ We prove this by arguing that each matroid on $n$ elements has a faithful description consisting of a stable set of a Johnson graph together with a (by comparison) vanishing amount of other information, and using that stable sets in these Johnson graphs correspond one-to-one to sparse paving matroids on $n$ elements. As a consequence of our result, we find that for all $\beta > \displaystyle{\sqrt{\frac{\ln 2}{2}}} = 0.5887\cdots$, asymptotically almost all matroids on $n$ elements have rank in the range $n/2 \pm \beta\sqrt{n}$.

[1]  Charles Semple,et al.  On properties of almost all matroids , 2013, Adv. Appl. Math..

[2]  Dillon Mayhew,et al.  On the asymptotic proportion of connected matroids , 2011, Eur. J. Comb..

[3]  Wojciech Samotij,et al.  Counting sum-free sets in abelian groups , 2012, 1201.6654.

[4]  Peter Keevash The existence of designs , 2014, 1401.3665.

[5]  Nikhil Bansal,et al.  On the number of matroids , 2013, SODA.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  D. J. A. Welsh,et al.  On the Number of Combinatorial Geometries , 1971 .

[8]  Dillon Mayhew,et al.  On the number of sparse paving matroids , 2013, Adv. Appl. Math..

[9]  Andrew G. Glen,et al.  APPL , 2001 .

[10]  N. J. A. Sloane,et al.  Lower bounds for constant weight codes , 1980, IEEE Trans. Inf. Theory.

[11]  G. Rota,et al.  On The Foundations of Combinatorial Theory: Combinatorial Geometries , 1970 .

[12]  Daniel J. Kleitman,et al.  On the number of graphs without 4-cycles , 1982, Discret. Math..

[13]  Stasys Jukna,et al.  Extremal Combinatorics - With Applications in Computer Science , 2001, Texts in Theoretical Computer Science. An EATCS Series.

[14]  H. Crapo,et al.  A catalogue of combinatorial geometries , 1973 .

[15]  B. M. Fulk MATH , 1992 .

[16]  Wojciech Samotij,et al.  Counting independent sets in graphs , 2014, Eur. J. Comb..