Deep Tech and Artificial Intelligence for Worker Safety in Robotic Manufacturing Environments

[1]  Yee Wen Choon,et al.  Differential Bees Flux Balance Analysis with OptKnock for In Silico Microbial Strains Optimization , 2014, PloS one.

[2]  Rafhael Rodrigues Cunha Development of a Graphical Tool to integrate the Prometheus AEOlus methodology and Jason Platform , 2017, DCAI 2017.

[3]  Juan M. Corchado,et al.  Tendencies of Technologies and Platforms in Smart Cities: A State-of-the-Art Review , 2018, Wirel. Commun. Mob. Comput..

[4]  Juan M. Corchado,et al.  A Comparative Performance Study of Feature Selection Methods for the Anti-spam Filtering Domain , 2006, ICDM.

[5]  Juan M. Corchado,et al.  Forecasting the probability of finding oil slicks using a CBR system , 2009, Expert Syst. Appl..

[6]  Juan M. Corchado,et al.  Heterogeneous Wireless Sensor Networks in a Tele-monitoring System for Homecare , 2009, IWANN.

[7]  Juan M. Corchado,et al.  Unsupervised neural method for temperature forecasting , 1999, Artif. Intell. Eng..

[8]  Juan M. Corchado,et al.  Maximum Likelihood Hebbian Learning Based Retrieval Method for CBR Systems , 2003, ICCBR.

[9]  André Pinz Borges,et al.  Using trust degree for agents in order to assign spots in a Smart Parking , 2017, DCAI 2017.

[10]  Ahmad B. A. Hassanat,et al.  Greedy Algorithms for Approximating the Diameter of Machine Learning Datasets in Multidimensional Euclidean Space , 2018, ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal.

[11]  Juan M. Corchado,et al.  Algorithm design for parallel implementation of the SMC-PHD filter , 2016, Signal Process..

[12]  Juan M. Corchado,et al.  A particle dyeing approach for track continuity for the SMC-PHD filter , 2014, 17th International Conference on Information Fusion (FUSION).

[13]  Juan M. Corchado,et al.  Applying lazy learning algorithms to tackle concept drift in spam filtering , 2007, Expert Syst. Appl..

[14]  Inés Sittón-Candanedo,et al.  A Review on Edge Computing in Smart Energy by means of a Systematic Mapping Study , 2019, Electronics.

[15]  Juan M. Corchado,et al.  How blockchain improves the supply chain: case study alimentary supply chain , 2018, FNC/MobiSPC.

[16]  Juan M. Corchado,et al.  A forecasting solution to the oil spill problem based on a hybrid intelligent system , 2010, Inf. Sci..

[17]  Javier Prieto,et al.  Distributed Continuous-Time Fault Estimation Control for Multiple Devices in IoT Networks , 2019, IEEE Access.

[18]  Leonor Becerra-Bonache,et al.  Linguistic models at the crossroads of agents, learning and formal languages , 2014, DCAI 2014.

[19]  Juan M. Corchado,et al.  Non-linear adaptive closed-loop control system for improved efficiency in IoT-blockchain management , 2019, Inf. Fusion.

[20]  Juan M. Corchado,et al.  FSfRT: Forecasting System for Red Tides , 2004, Applied Intelligence.

[21]  Juan M. Corchado,et al.  Detection of Cattle Using Drones and Convolutional Neural Networks , 2018, Sensors.

[22]  Óscar García,et al.  Intelligent Agents and Wireless Sensor Networks: A Healthcare Telemonitoring System , 2010, PAAMS.

[23]  Jose-Luis Poza-Lujan,et al.  Integrating Smart Resources in ROS-based systems to distribute services , 2017, DCAI 2017.

[24]  Abdul Hanan Abdullah,et al.  Secure data access control with perception reasoning , 2018 .

[25]  Carlos Carrascosa,et al.  Adding real data to detect emotions by means of smart resource artifacts in MAS , 2016 .

[26]  Luis Fernando Castillo,et al.  Development of CBR-BDI Agents: A Tourist Guide Application , 2004, ECCBR.

[27]  Juan M. Corchado,et al.  Hybrid artificial intelligence methods in oceanographic forecast models , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[28]  Araceli Queiruga Dios,et al.  Manufacturing processes in the textile industry. Expert Systems for fabrics production , 2017, DCAI 2017.

[29]  Ana Cristina Bicharra Garcia,et al.  ACoPla: a Multiagent Simulator to Study Individual Strategies in Dynamic Situations , 2018 .

[30]  Juan M. Corchado,et al.  A hybrid case-based model for forecasting , 2001, Appl. Artif. Intell..

[31]  Mustafa Ghanem Saeed,et al.  Developing a Software for Diagnosing Heart Disease via Data Mining Techniques , 2018 .

[32]  Eder Mateus Nunes Gonçalves,et al.  Ulises: A Agent-Based System For Timbre Classification , 2017, DCAI 2017.

[33]  Demetrio A. Ovalle,et al.  Multi-agent system for Knowledge-based recommendation of Learning Objects , 2015, DCAI 2015.

[34]  Juan M. Corchado,et al.  Collaborative learning via social computing , 2019, Frontiers of Information Technology & Electronic Engineering.

[35]  Roberto Casado-Vara,et al.  Security Countermeasures of a SCIRAS Model for Advanced Malware Propagation , 2019, IEEE Access.

[36]  Juan M. Corchado,et al.  Automating the construction of CBR systems using kernel methods , 2001, Int. J. Intell. Syst..

[37]  Ricardo S. Alonso,et al.  A Survey on Software-Defined Networks and Edge Computing over IoT , 2019, PAAMS.

[38]  Juan M. Corchado,et al.  A review of edge computing reference architectures and a new global edge proposal , 2019, Future Gener. Comput. Syst..

[39]  Belén Pérez Lancho,et al.  Cloud-IO: Cloud Computing Platform for the Fast Deployment of Services over Wireless Sensor Networks , 2012, KMO.

[40]  Elif Derya íbeyli Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals , 2010 .

[41]  Maximilian Jaderson De Melo,et al.  Robust and adaptive chatter free formation control of wheeled mobile robots with uncertainties , 2018 .

[42]  Angélica González,et al.  Embedding reactive hardware agents into heterogeneous sensor networks , 2010, 2010 13th International Conference on Information Fusion.

[43]  Yaser Abdul Aali Jasim Improving Intrusion Detection Systems Using Artificial Neural Networks , 2018 .

[44]  Wu Jun,et al.  Fatigue driving recognition network: fatigue driving recognition via convolutional neural network and long short‐term memory units , 2019, IET Intelligent Transport Systems.

[45]  Sameerchand Pudaruth,et al.  Sentiment Analysis from Facebook Comments using Automatic Coding in NVivo 11 , 2018 .

[46]  Zulfiqar Ali,et al.  Evolutionary Algorithms for Query Op-timization in Distributed Database Sys-tems: A review , 2018, ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal.

[47]  Juan M. Corchado,et al.  An Ambient Intelligence Based Multi-Agent System for Alzheimer Health Care , 2009, Int. J. Ambient Comput. Intell..

[48]  Juan M. Corchado,et al.  Artificial Intelligence as a Way of Overcoming Visual Disorders: Damages Related to Visual Cortex, Optic Nerves and Eyes , 2019, DCAI.

[49]  Juan M. Corchado,et al.  Context aware Q-Learning-based model for decision support in the negotiation of energy contracts , 2019 .

[50]  Juan Manuel Corchado Rodríguez,et al.  Analytical model for constructing deliberative agents , 2002 .

[51]  Márcio Ricardo Ferreira,et al.  Ransomware - Kidnapping personal data for ransom and the information as hostage , 2018 .

[52]  Anahiby Anyel Becerril The value of our personal data in the Big Data and the Internet of all Things Era , 2018 .

[53]  David Griol,et al.  Simulating heterogeneous user behaviors to interact with conversational interfaces , 2016 .

[54]  Mohd Sharifuddin Ahmad,et al.  Research Supervision Management Via A Multi-Agent Framework , 2014, DCAI 2014.

[55]  Juan M. Corchado,et al.  Intelligent business processes composition based on multi-agent systems , 2014, Expert Syst. Appl..

[56]  Juan M. Corchado,et al.  Energy Optimization Using a Case-Based Reasoning Strategy , 2018, Sensors.

[57]  Juan M. Corchado,et al.  Reducing the Memory Size of a Fuzzy Case-Based Reasoning System Applying Rough Set Techniques , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[58]  Sergi Robles,et al.  Improving Podcast Distribution on Gwanda using PrivHab: a Multiagent Secure Georouting Protocol. , 2015, DCAI 2015.

[59]  Sebastian Lehnhoff,et al.  Decentralized Coalition Formation with Agent-based Combinatorial Heuristics , 2017, DCAI 2017.

[60]  Ricardo S. Alonso,et al.  Edge Computing, IoT and Social Computing in Smart Energy Scenarios , 2019, Sensors.

[61]  Rafael H. Bordini,et al.  A Multi-Agent Extension of a Hierarchical Task Network Planning Formalism , 2017, DCAI 2017.

[62]  Javier Bajo,et al.  Mitigation of the ground reflection effect in real-time locating systems based on wireless sensor networks by using artificial neural networks , 2012, Knowledge and Information Systems.

[63]  Juan M. Corchado,et al.  A polarity analysis framework for Twitter messages , 2015, Appl. Math. Comput..

[64]  A. Martín del Rey,et al.  Reversibility of Symmetric Linear Cellular Automata with Radius r = 3 , 2019 .

[65]  Juan M. Corchado,et al.  IoT network slicing on virtual layers of homogeneous data for improved algorithm operation in smart buildings , 2020, Future Gener. Comput. Syst..

[66]  Juan M. Corchado,et al.  Integrating hardware agents into an enhanced multi-agent architecture for Ambient Intelligence systems , 2013, Inf. Sci..

[67]  Juan M. Corchado,et al.  SpamHunting: An instance-based reasoning system for spam labelling and filtering , 2007, Decis. Support Syst..

[68]  Ricardo S. Alonso,et al.  An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario , 2020, Ad Hoc Networks.

[69]  Juan M. Corchado,et al.  gene‐CBR: A CASE‐BASED REASONIG TOOL FOR CANCER DIAGNOSIS USING MICROARRAY DATA SETS , 2006, Comput. Intell..

[70]  Juan M. Corchado,et al.  Solving multi-criteria group decision making problems under environments with a high number of alternatives using fuzzy ontologies and multi-granular linguistic modelling methods , 2017, Knowl. Based Syst..

[71]  Diana Francisca Adamatti,et al.  An Agent-based Environment for Dynamic Positioning of the Fogg Behavior Model Threshold Line , 2018 .

[72]  Miguel A. Becerra,et al.  Kernel-based framework for spectral dimensionality reduction and clustering formulation: A theoretical study , 2017, DCAI 2017.