Graph Theoretic and Motif Analyses of the Hippocampal Neuron Type Potential Connectome

Abstract We computed the potential connectivity map of all known neuron types in the rodent hippocampal formation by supplementing scantly available synaptic data with spatial distributions of axons and dendrites from the open-access knowledge base Hippocampome.org. The network that results from this endeavor, the broadest and most complete for a mammalian cortical region at the neuron-type level to date, contains more than 3200 connections among 122 neuron types across six subregions. Analyses of these data using graph theory metrics unveil the fundamental architectural principles of the hippocampal circuit. Globally, we identify a highly specialized topology minimizing communication cost; a modular structure underscoring the prominence of the trisynaptic loop; a core set of neuron types serving as information-processing hubs as well as a distinct group of particular antihub neurons; a nested, two-tier rich club managing much of the network traffic; and an innate resilience to random perturbations. At the local level, we uncover the basic building blocks, or connectivity patterns, that combine to produce complex global functionality, and we benchmark their utilization in the circuit relative to random networks. Taken together, these results provide a comprehensive connectivity profile of the hippocampus, yielding novel insights on its functional operations at the computationally crucial level of neuron types.

[1]  Mark D. McDonnell,et al.  Methods for Generating Complex Networks with Selected Structural Properties for Simulations: A Review and Tutorial for Neuroscientists , 2011, Front. Comput. Neurosci..

[2]  Javier DeFelipe,et al.  From the Connectome to the Synaptome: An Epic Love Story , 2010, Science.

[3]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[4]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[5]  Concha Bielza,et al.  Optimizing Brain Networks Topologies Using Multi-objective Evolutionary Computation , 2011, Neuroinformatics.

[6]  Murray Shanahan,et al.  Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis , 2013, Front. Comput. Neurosci..

[7]  M. Migliore,et al.  Feed-forward inhibition as a buffer of the neuronal input-output relation , 2009, Proceedings of the National Academy of Sciences.

[8]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[9]  S. Petersen,et al.  Concepts and principles in the analysis of brain networks , 2011, Annals of the New York Academy of Sciences.

[10]  E A Leicht,et al.  Community structure in directed networks. , 2007, Physical review letters.

[11]  M. Frotscher,et al.  A hippocampal interneuron associated with the mossy fiber system. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Olaf Sporns,et al.  Communication Efficiency and Congestion of Signal Traffic in Large-Scale Brain Networks , 2014, PLoS Comput. Biol..

[13]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[14]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[15]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[16]  H. Gundersen,et al.  Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator , 1991, The Anatomical record.

[17]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[18]  D. Chklovskii,et al.  Maps in the brain: what can we learn from them? , 2004, Annual review of neuroscience.

[19]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[20]  V. Eguíluz,et al.  Growing scale-free networks with small-world behavior. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Lief E. Fenno,et al.  Neocortical excitation/inhibition balance in information processing and social dysfunction , 2011, Nature.

[22]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[23]  L.F. Abbott,et al.  Gating Multiple Signals through Detailed Balance of Excitation and Inhibition in Spiking Networks , 2009, Nature Neuroscience.

[24]  B. Bollobás The evolution of random graphs , 1984 .

[25]  Natalie L. M. Cappaert,et al.  Graph analysis of the anatomical network organization of the hippocampal formation and parahippocampal region in the rat , 2015, Brain Structure and Function.

[26]  Petter Laake,et al.  Recommended tests for association in 2×2 tables , 2009, Statistics in medicine.

[27]  O. Sporns,et al.  Connectomics-Based Analysis of Information Flow in the Drosophila Brain , 2015, Current Biology.

[28]  O. Sporns,et al.  Network hubs in the human brain , 2013, Trends in Cognitive Sciences.

[29]  Prof. Dr. Valentino Braitenberg,et al.  Anatomy of the Cortex , 1991, Studies of Brain Function.

[30]  G. Fagiolo Clustering in complex directed networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  T. Freund,et al.  Interneurons Containing Calretinin Are Specialized to Control Other Interneurons in the Rat Hippocampus , 1996, The Journal of Neuroscience.

[32]  O. Sporns,et al.  Motifs in Brain Networks , 2004, PLoS biology.

[33]  Dmitri B. Chklovskii,et al.  Wiring Optimization in Cortical Circuits , 2002, Neuron.

[34]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[35]  Elizabeth Gould,et al.  Structural plasticity and hippocampal function. , 2010, Annual review of psychology.

[36]  Shi Zhou,et al.  The rich-club phenomenon in the Internet topology , 2003, IEEE Communications Letters.

[37]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[38]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[39]  M P Young,et al.  Analysis of the connectional organization of neural systems associated with the hippocampus in rats. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[40]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[41]  T. Insel,et al.  The NIH BRAIN Initiative , 2013, Science.

[42]  Y. Dan,et al.  Long-range and local circuits for top-down modulation of visual cortex processing , 2014, Science.

[43]  T. Kosaka,et al.  Quantitative analysis of GABA-like-immunoreactive and parvalbumin-containing neurons in the CA1 region of the rat hippocampus using a stereological method, the disector , 1994, Experimental Brain Research.

[44]  K. Harris,et al.  Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective , 2010, Neuron.

[45]  James O McNamara,et al.  Plasticity of both excitatory and inhibitory synapses is associated with seizures induced by removal of chronic blockade of activity in cultured hippocampus. , 2006, Journal of neurophysiology.

[46]  Partha P. Mitra,et al.  The Circuit Architecture of Whole Brains at the Mesoscopic Scale , 2014, Neuron.

[47]  Karl Pearson “DAS FEHLERGESETZ UND SEINE VERALLGEMEINER-UNGEN DURCH FECHNER UND PEARSON.” A REJOINDER , 1905 .

[48]  Alexandros Goulas,et al.  Is the brain really a small-world network? , 2015, Brain Structure and Function.

[49]  L. Acsády,et al.  Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus , 1996, Neuroscience.

[50]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[51]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[52]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[53]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[54]  Phillip Larimer,et al.  Nonrandom Local Circuits in the Dentate Gyrus , 2008, The Journal of Neuroscience.

[55]  Ivan Cohen,et al.  Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum , 2015, Front. Neural Circuits.

[56]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[57]  John D. Storey A direct approach to false discovery rates , 2002 .

[58]  Maxym Myroshnychenko,et al.  High-Degree Neurons Feed Cortical Computations , 2016, PLoS Comput. Biol..

[59]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[60]  T. M. Mayhew,et al.  Anatomy of the Cortex: Statistics and Geometry. , 1991 .

[61]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[62]  Eric I. Knudsen,et al.  Selective disinhibition: A unified neural mechanism for predictive and post hoc attentional selection , 2015, Vision Research.

[63]  Luciano da Fontoura Costa,et al.  Rich-club phenomenon across complex network hierarchies , 2007 .

[64]  B. McNaughton,et al.  Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. , 2004, Journal of neurophysiology.

[65]  S. Herculano‐Houzel,et al.  Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat , 2009, Proceedings of the National Academy of Sciences.

[66]  Michael P Stryker,et al.  A cortical disinhibitory circuit for enhancing adult plasticity , 2015, eLife.

[67]  U. Alon,et al.  Just-in-time transcription program in metabolic pathways , 2004, Nature Genetics.

[68]  G. Fishell,et al.  A disinhibitory circuit mediates motor integration in the somatosensory cortex , 2013, Nature Neuroscience.

[69]  T. Bliss,et al.  The Hippocampus Book , 2006 .

[70]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[71]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[72]  R. Tyagi Neural Networks of the Mouse Neocortex, Cell 156, 1096–1111, February 27, 2014 , 2015 .

[73]  Luciano da Fontoura Costa,et al.  Communication Structure of Cortical Networks , 2011, Front. Comput. Neurosci..

[74]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[75]  Mitchell Glickstein,et al.  Foundations of the neuron doctrine , 1993, Medical History.

[76]  Cellular composition characterizing postnatal development and maturation of the mouse brain and spinal cord , 2013, Brain Structure and Function.

[77]  J. Nyengaard,et al.  Design-based estimation of neuronal number and individual neuronal volume in the rat hippocampus , 2007, Journal of Neuroscience Methods.

[78]  Thomas J. McHugh,et al.  Updating hippocampal representations: CA2 joins the circuit , 2011, Trends in Neurosciences.

[79]  S. S. Young,et al.  Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment , 1993 .

[80]  H. Hayashi,et al.  Synchronized spike selection in a hippocampal dentate gyrus network model in the theta frequency range , 2007 .

[81]  Alessandro Vespignani,et al.  Detecting rich-club ordering in complex networks , 2006, physics/0602134.

[82]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[83]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[84]  O. Sporns,et al.  Rich Club Organization of Macaque Cerebral Cortex and Its Role in Network Communication , 2012, PloS one.

[85]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[86]  Alois Schlögl,et al.  Synaptic mechanisms of pattern completion in the hippocampal CA3 network , 2016, Science.

[87]  Ivan Soltesz,et al.  Quantitative assessment of CA1 local circuits: Knowledge base for interneuron‐pyramidal cell connectivity , 2013, Hippocampus.

[88]  C. L. Rees,et al.  Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus , 2015, eLife.

[89]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[90]  Natalie L. M. Cappaert,et al.  The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network , 2009, Nature Reviews Neuroscience.

[91]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[92]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[93]  Jeff W Lichtman,et al.  The rise of the 'projectome' , 2007, Nature Methods.

[94]  M E J Newman,et al.  Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  Andreas Lüthi,et al.  Disinhibition, a Circuit Mechanism for Associative Learning and Memory , 2015, Neuron.

[96]  J. Magee,et al.  Structured Synaptic Connectivity between Hippocampal Regions , 2014, Neuron.

[97]  Dimitri M. Kullmann,et al.  Oscillations and Filtering Networks Support Flexible Routing of Information , 2010, Neuron.

[98]  Y. Ben-Ari,et al.  Organization of the GABAergic system in the rat hippocampal formation: A quantitative immunocytochemical study , 1989, The Journal of comparative neurology.

[99]  P. Westfall Kurtosis as Peakedness, 1905–2014. R.I.P. , 2014, The American statistician.

[100]  G Tononi,et al.  Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. , 2000, Cerebral cortex.

[101]  Giorgio A. Ascoli,et al.  Name-calling in the hippocampus (and beyond): coming to terms with neuron types and properties , 2016, Brain Informatics.

[102]  Laura A. Ewell,et al.  Frequency-Tuned Distribution of Inhibition in the Dentate Gyrus , 2010, The Journal of Neuroscience.