A 65-nm CMOS Constant Current Source With Reduced PVT Variation

This paper presents a new nanometer-based low-power constant current reference that attains a small value in the total process–voltage–temperature variation. The circuit architecture is based on the embodiment of a process-tolerant bias current circuit and a scaled process-tracking bias voltage source for the dedicated temperature-compensated voltage-to-current conversion in a preregulator loop. Fabricated in a UMC 65-nm CMOS process, it consumes <inline-formula> <tex-math notation="LaTeX">$7.18~\mu \text{W}$ </tex-math></inline-formula> with a 1.4 V supply. The measured results indicate that the current reference achieves an average temperature coefficient of 119 ppm/°C over 12 samples in a temperature range from −30 °C to 90 °C without any calibration. Besides, a low line sensitivity of 180 ppm/V is obtained. This paper offers a better sensitivity figure of merit with respect to the reported representative counterparts.

[1]  H. Wong,et al.  CMOS scaling into the nanometer regime , 1997, Proc. IEEE.

[2]  P. Bernardson Precision, temperature and supply independent CMOS current source with no external components , 2002 .

[3]  Abdelhalim Bendali,et al.  A 1-V CMOS Current Reference With Temperature and Process Compensation , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Damian Imbrea A CMOS current reference based on generating PTC currents , 2015, 2015 International Symposium on Signals, Circuits and Systems (ISSCS).

[5]  Sani R. Nassif,et al.  Characterizing Process Variation in Nanometer CMOS , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[6]  Carlos Galup-Montoro,et al.  A 2-nW 1.1-V self-biased current reference in CMOS technology , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[7]  Paolo Stefano Crovetti,et al.  A new compact temperature-compensated CMOS current reference , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  Volkan Kursun,et al.  Impact of temperature fluctuations on circuit characteristics in 180nm and 65nm CMOS technologies , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[9]  Changsik Yoo,et al.  CMOS current reference with supply and temperature compensation , 2007 .

[10]  P. K. Chan,et al.  A low noise, 1.28µA quiescent regulator with broadband high PSR for micropower sensors , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[11]  Phillip E. Allen,et al.  A process, voltage, and temperature compensated CMOS constant current reference , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[12]  Christofer Toumazou,et al.  A resistorless low current reference circuit for implantable devices , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[13]  Melik Yazici,et al.  Wide Range, Process and Temperature Compensated Voltage Controlled Current Source , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  J. Johnson,et al.  Lateral ion implant straggle and mask proximity effect , 2003 .

[15]  Yannis Tsividis,et al.  Operation and Modeling of the Mos Transistor (The Oxford Series in Electrical and Computer Engineering) , 2004 .

[16]  Mark Horowitz,et al.  Scaling, Power and the Future of CMOS , 2007, 20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID'07).

[17]  Kenneth W. Martin,et al.  Analog integrated circuit design. 2nd ed. , 2012 .

[18]  Y. Amemiya,et al.  A 1-μW 600-ppm/◦C Current Reference Circuit Consisting of Subthreshold CMOS Circuits , 2010 .

[19]  H. Oguey,et al.  CMOS Current Reference without Resistance , 1996, ESSCIRC '96: Proceedings of the 22nd European Solid-State Circuits Conference.

[20]  Tetsuya Asai,et al.  A 1-$\mu\hbox{W}$ 600- $\hbox{ppm}/^{\circ}\hbox{C}$ Current Reference Circuit Consisting of Subthreshold CMOS Circuits , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[21]  Byung-Do Yang,et al.  An accurate current reference using temperature and process compensation current mirror , 2009, 2009 IEEE Asian Solid-State Circuits Conference.

[22]  Trond Ytterdal,et al.  Analog Circuit Design in Nanoscale CMOS Technologies , 2009, Proceedings of the IEEE.

[23]  Willy Sansen,et al.  A CMOS temperature-compensated current reference , 1988 .

[24]  M.J.M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[25]  Kenneth R. Laker,et al.  Design of analog integrated circuits and systems , 1994 .

[26]  Jang Wang Stress effects on MOSFETs , 2008 .

[27]  G. Serrano,et al.  A Precision Low-TC Wide-Range CMOS Current Reference , 2008, IEEE Journal of Solid-State Circuits.

[28]  Tomasz Borejko,et al.  A resistorless current reference source for 65 nm CMOS technology with low sensitivity to process, supply voltage and temperature variations , 2011, 14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems.

[29]  Wei Liu,et al.  A resistor-free temperature-compensated CMOS current reference , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[30]  I. Filanovsky,et al.  Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits , 2001 .

[31]  C.-H. Lee,et al.  All-CMOS temperature independent current reference , 1996 .

[32]  Dong Wang,et al.  A Performance-Aware MOSFET Threshold Voltage Measurement Circuit in a 65-nm CMOS , 2016, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[33]  James D. Meindl,et al.  Impact of die-to-die and within-die parameter fluctuations on the maximum clock frequency distribution for gigascale integration , 2002, IEEE J. Solid State Circuits.

[34]  Dipu Pramanik,et al.  Stress-aware design methodology , 2006, 7th International Symposium on Quality Electronic Design (ISQED'06).

[35]  Richard C. Jaeger,et al.  Effects of stress-induced mismatches on CMOS analog circuits , 1995, 1995 International Symposium on VLSI Technology, Systems, and Applications. Proceedings of Technical Papers.

[36]  Giuseppe Scotti,et al.  Low Voltage CMOS Current and Voltage References without Resistors , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[37]  SeongHwan Cho,et al.  A 1.4-µW 24.9-ppm/°C Current Reference With Process-Insensitive Temperature Compensation in 0.18-µm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[38]  T. Asai,et al.  A 46-ppm/°C temperature and process compensated current reference with on-chip threshold voltage monitoring circuit , 2008, 2008 IEEE Asian Solid-State Circuits Conference.

[39]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .