A new metaheuristic for numerical function optimization: Vortex Search algorithm

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[3]  K. Steiglitz,et al.  Adaptive step size random search , 1968 .

[4]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[5]  Günther F. Schrack,et al.  Optimized relative step size random searches , 1976, Math. Program..

[6]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[7]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[8]  G. Allasia,et al.  Numerical calculation of incomplete gamma functions by the trapezoidal rule , 1987 .

[9]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[10]  Larry C. Andrews,et al.  Special Functions Of Mathematics For Engineers , 2022 .

[11]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[12]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[13]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[14]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[15]  Walter Gautschi,et al.  A note on the recursive calculation of incomplete gamma functions , 1999, TOMS.

[16]  Thomas Stützle,et al.  Classification of Metaheuristics and Design of Experiments for the Analysis of Components , 2001 .

[17]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[18]  Serge Winitzki Computing the Incomplete Gamma Function to Arbitrary Precision , 2003, ICCSA.

[19]  K. C. Mundim,et al.  Performance and parameterization of the algorithm Simplified Generalized Simulated Annealing , 2004 .

[20]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[21]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[22]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[23]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[24]  Luís N. Vicente,et al.  PSwarm: a hybrid solver for linearly constrained global derivative-free optimization , 2009, Optim. Methods Softw..

[25]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[26]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[27]  P. Hansen,et al.  Variable neighbourhood search: methods and applications , 2010, Ann. Oper. Res..

[28]  Jacques Teghem Metaheuristics. From Design to Implementation, El-Ghazali Talbi. John Wiley & Sons Inc. (2009). XXI + 593 pp., Publication 978-0-470-27858-1 , 2010, Eur. J. Oper. Res..

[29]  Pierre Hansen,et al.  Variable neighbourhood search: methods and applications , 2010, Ann. Oper. Res..

[30]  T. Stützle,et al.  Iterated Local Search: Framework and Applications , 2018, Handbook of Metaheuristics.

[31]  Abdullah Alsheddy,et al.  Empowerment Scheduling: A Multi-objective Optimization Approach Using Guided Local Search , 2011 .

[32]  Antonio LaTorre,et al.  A MOS-based dynamic memetic differential evolution algorithm for continuous optimization: a scalability test , 2011, Soft Comput..

[33]  Xu Wei-bin A Modified Artificial Bee Colony Algorithm , 2011 .

[34]  Ali Sarosh,et al.  Simulated annealing based artificial bee colony algorithm for global numerical optimization , 2012, Appl. Math. Comput..

[35]  Ponnuthurai N. Suganthan,et al.  A Differential Covariance Matrix Adaptation Evolutionary Algorithm for real parameter optimization , 2012, Inf. Sci..

[36]  Dervis Karaboga,et al.  A modified Artificial Bee Colony algorithm for real-parameter optimization , 2012, Inf. Sci..

[37]  Andrew Lim,et al.  Example-based learning particle swarm optimization for continuous optimization , 2012, Information Sciences.

[38]  Z. Beheshti A review of population-based meta-heuristic algorithm , 2013, SOCO 2013.

[39]  Giovanni Iacca,et al.  Compact Particle Swarm Optimization , 2013, Inf. Sci..

[40]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[41]  A. Gandomi,et al.  Swarm Intelligence and Bio-inspired Computation Swarm Intelligence and Bio-inspired Computation Theory and Applications Library of Congress Cataloging-in-publication Data , 2013 .

[42]  Helbert E. Espitia,et al.  Vortex Particle Swarm Optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[43]  Pinar Çivicioglu,et al.  Backtracking Search Optimization Algorithm for numerical optimization problems , 2013, Appl. Math. Comput..

[44]  Min Han,et al.  An evolutionary membrane algorithm for global numerical optimization problems , 2014, Inf. Sci..

[45]  Lingling Huang,et al.  Enhancing artificial bee colony algorithm using more information-based search equations , 2014, Inf. Sci..

[46]  V. Vaidehi,et al.  Hierarchical Particle Swarm Optimization with Ortho-Cyclic Circles , 2014, Expert Syst. Appl..

[47]  Bo Yang,et al.  Improving particle swarm optimization using multi-layer searching strategy , 2014, Inf. Sci..