Analysis of geometric uncertainties in CFD problems solved by RBF-FD meshless method

Abstract In order to analyze incompressible and laminar fluid flows in presence of geometric uncertainties on the boundaries, the Non-Intrusive Polynomial Chaos method is employed, which allows the use of a deterministic fluid dynamic solver. The quantification of the fluid flow uncertainties is based on a set of deterministic response evaluations, which are obtained through a Radial Basis Function-generated Finite Differences meshless method. The use of such deterministic solver represents the key point of the analysis, thanks to the computational efficiency and similar accuracy over the traditional mesh-based numerical methods. The validation of the proposed approach is carried out through the solution of the flow past a 2D spinning cylinder near a moving wall and the flow over a backward-facing step, in presence of stochastic geometries. The applicability to practical problems is demonstrated through the investigation of geometric uncertainty effects on the forced convection of A l 2 O 3 -water nanofluid laminar flow in a grooved microchannel.

[1]  Alain J. Kassab,et al.  Localized Meshless Modeling of Natural-Convective Viscous Flows , 2008 .

[2]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[3]  Domenico Quagliarella,et al.  Benchmarking Uncertainty Quantification Methods Using the NACA 2412 Airfoil with Geometrical and Operational Uncertainties , 2019 .

[4]  Bengt Fornberg,et al.  Stabilization of RBF-generated finite difference methods for convective PDEs , 2011, J. Comput. Phys..

[5]  E. Nobile,et al.  Solution of incompressible fluid flow problems with heat transfer by means of an efficient RBF-FD meshless approach , 2019, Numerical Heat Transfer, Part B: Fundamentals.

[6]  N. Galanis,et al.  Heat transfer enhancement by using nanofluids in forced convection flows , 2005 .

[7]  E. Erturk,et al.  Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions , 2008 .

[8]  Gregor Kosec,et al.  Solution of thermo‐fluid problems by collocation with local pressure correction , 2008 .

[9]  YuanTong Gu,et al.  Meshless techniques for convection dominated problems , 2006 .

[10]  M. Eldred Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design , 2009 .

[11]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[12]  Valentino Pediroda,et al.  Prediction of geometric uncertainty effects on Fluid Dynamics by Polynomial Chaos and Fictitious Domain method , 2010 .

[13]  S. Chinchalkar,et al.  Geometric uncertainties in finite element analysis , 1994 .

[14]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[15]  D. Xiu,et al.  A new stochastic approach to transient heat conduction modeling with uncertainty , 2003 .

[16]  P. Nair,et al.  A compact RBF-FD based meshless method for the incompressible Navier—Stokes equations , 2009 .

[17]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[18]  Lin Chen,et al.  A review of Backward-Facing Step (BFS) flow mechanisms, heat transfer and control , 2018, Thermal Science and Engineering Progress.

[19]  Tim Lee,et al.  Experimental and numerical investigation of 2-D backward-facing step flow , 1998 .

[20]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[21]  M. Eldred,et al.  Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .

[22]  L. Mathelin,et al.  A Stochastic Collocation Algorithm for Uncertainty Analysis , 2003 .

[23]  Riccardo Zamolo,et al.  Two algorithms for fast 2D node generation: Application to RBF meshless discretization of diffusion problems and image halftoning , 2018, Comput. Math. Appl..

[24]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[25]  Daniel M. Tartakovsky,et al.  Numerical Methods for Differential Equations in Random Domains , 2006, SIAM J. Sci. Comput..

[26]  Jeroen A. S. Witteveen,et al.  Probabilistic Collocation: An Efficient Non-Intrusive Approach for Arbitrarily Distributed Parametric Uncertainties , 2007 .

[27]  Valentino Pediroda,et al.  Fictitious Domain with Least-Squares Spectral Element Method to Explore Geometric Uncertainties by Non-Intrusive Polynomial Chaos Method , 2007 .

[28]  Mattias Schevenels,et al.  Topology optimization with geometric uncertainties by perturbation techniques , 2012 .

[29]  Alain J. Kassab,et al.  An Efficient Localized Radial Basis Function Meshless Method for Fluid Flow and Conjugate Heat Transfer , 2007 .

[30]  S. Sarra,et al.  Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations , 2009 .

[31]  John Fisher,et al.  The effects of geometric uncertainties on computational modelling of knee biomechanics , 2017, Royal Society Open Science.

[32]  Mrinal K. Sen,et al.  A stabilized radial basis-finite difference (RBF-FD) method with hybrid kernels , 2018, Comput. Math. Appl..

[33]  Jeroen A. S. Witteveen,et al.  EFFICIENT UNCERTAINTY QUANTIFICATION USING A TWO-STEP APPROACH WITH CHAOS COLLOCATION , 2006 .

[34]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .

[35]  Hans-Joachim Bungartz,et al.  Nonintrusive Uncertainty Analysis of Fluid-Structure Interaction with Spatially Adaptive Sparse Grids and Polynomial Chaos Expansion , 2018, SIAM J. Sci. Comput..

[36]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[37]  R. Franke A Critical Comparison of Some Methods for Interpolation of Scattered Data , 1979 .

[38]  Robert Ulichney Review of halftoning techniques , 1999, Electronic Imaging.

[39]  Qi Jing,et al.  An Investigation on the Forced Convection of Al2O3-water Nanofluid Laminar Flow in a Microchannel Under Interval Uncertainties , 2019 .

[40]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[41]  Valentino Pediroda,et al.  A Fast and Robust Adaptive Methodology for Airfoil Design Under Uncertainties based on Game Theory and Self- Organising-Map Theory , 2006 .

[42]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[43]  Claudio Canuto,et al.  A fictitious domain approach to the numerical solution of PDEs in stochastic domains , 2007, Numerische Mathematik.

[44]  B. Armaly,et al.  Experimental and theoretical investigation of backward-facing step flow , 1983, Journal of Fluid Mechanics.

[45]  Bengt Fornberg,et al.  On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs , 2017, J. Comput. Phys..

[46]  D. F. Yun,et al.  Improved localized radial basis function collocation method for multi-dimensional convection-dominated problems , 2016 .

[47]  George Em Karniadakis,et al.  Modeling Random Roughness in Supersonic Flow Past a Wedge , 2006 .

[48]  Alireza Doostan,et al.  Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..

[49]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[50]  Bruno Sudret,et al.  Polynomial chaos expansions and stochastic finite element methods , 2015 .

[51]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[52]  Robert L. Lee,et al.  The cause and cure (!) of the spurious pressures generated by certain fem solutions of the incompressible Navier‐Stokes equations: Part 2 , 1981 .

[53]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[54]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[55]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[56]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[57]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[58]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[59]  Somchai Wongwises,et al.  A review of entropy generation in nanofluid flow , 2013 .

[60]  Hua Li,et al.  Meshless Methods and Their Numerical Properties , 2013 .

[61]  Thomas Bewley,et al.  On the contravariant form of the Navier-Stokes equations in time-dependent curvilinear coordinate systems , 2004 .

[62]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[63]  Barry Koren,et al.  Upwind schemes for the Navier-Stokes equations , 1989 .

[64]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[65]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[66]  D. Xiu Efficient collocational approach for parametric uncertainty analysis , 2007 .

[67]  Bengt Fornberg,et al.  Solving PDEs with radial basis functions * , 2015, Acta Numerica.

[68]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[69]  Valentino Pediroda,et al.  Comparison of Body-Fitted and Fictitious Domain approach for CFD prediction of geometric incertanties by Polynomial Chaos using modeFRONTIER , 2011 .

[70]  Darrell W. Pepper,et al.  Global Versus Localized RBF Meshless Methods for Solving Incompressible Fluid Flow with Heat Transfer , 2015 .

[71]  Y. Sanyasiraju,et al.  Local RBF‐FD solutions for steady convection–diffusion problems , 2007 .

[72]  Gregory H. Wannier,et al.  A contribution to the hydrodynamics of lubrication , 1950 .

[73]  Bengt Fornberg,et al.  On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy , 2016, J. Comput. Phys..